强凸函数的广义詹森和詹森-默塞尔不等式及其应用

IF 1.5 3区 数学 Q1 MATHEMATICS
Slavica Ivelić Bradanović, Neda Lovričević
{"title":"强凸函数的广义詹森和詹森-默塞尔不等式及其应用","authors":"Slavica Ivelić Bradanović, Neda Lovričević","doi":"10.1186/s13660-024-03189-z","DOIUrl":null,"url":null,"abstract":"Strongly convex functions as a subclass of convex functions, still equipped with stronger properties, are employed through several generalizations and improvements of the Jensen inequality and the Jensen–Mercer inequality. This paper additionally provides applications of obtained main results in the form of new estimates for so-called strong f-divergences: the concept of the Csiszár f-divergence for strongly convex functions f, together with particular cases (Kullback–Leibler divergence, $\\chi ^{2}$ -divergence, Hellinger divergence, Bhattacharya distance, Jeffreys distance, and Jensen–Shannon divergence.) Furthermore, new estimates for the Shannon entropy are obtained, and new Chebyshev-type inequalities are derived.","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"261 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Jensen and Jensen–Mercer inequalities for strongly convex functions with applications\",\"authors\":\"Slavica Ivelić Bradanović, Neda Lovričević\",\"doi\":\"10.1186/s13660-024-03189-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Strongly convex functions as a subclass of convex functions, still equipped with stronger properties, are employed through several generalizations and improvements of the Jensen inequality and the Jensen–Mercer inequality. This paper additionally provides applications of obtained main results in the form of new estimates for so-called strong f-divergences: the concept of the Csiszár f-divergence for strongly convex functions f, together with particular cases (Kullback–Leibler divergence, $\\\\chi ^{2}$ -divergence, Hellinger divergence, Bhattacharya distance, Jeffreys distance, and Jensen–Shannon divergence.) Furthermore, new estimates for the Shannon entropy are obtained, and new Chebyshev-type inequalities are derived.\",\"PeriodicalId\":16088,\"journal\":{\"name\":\"Journal of Inequalities and Applications\",\"volume\":\"261 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inequalities and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13660-024-03189-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03189-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

强凸函数作为凸函数的一个子类,仍然具有更强的性质,通过对詹森不等式和詹森-默塞尔不等式的几种概括和改进而得到应用。本文还以所谓强 f 发散的新估计的形式提供了所获主要结果的应用:强凸函数 f 的 Csiszár f 发散概念以及特殊情况(Kullback-Leibler 发散、$chi ^{2}$ -发散、Hellinger 发散、Bhattacharya 距离、Jeffreys 距离和 Jensen-Shannon 发散)。此外,还得到了香农熵的新估计值,并推导出新的切比雪夫型不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Jensen and Jensen–Mercer inequalities for strongly convex functions with applications
Strongly convex functions as a subclass of convex functions, still equipped with stronger properties, are employed through several generalizations and improvements of the Jensen inequality and the Jensen–Mercer inequality. This paper additionally provides applications of obtained main results in the form of new estimates for so-called strong f-divergences: the concept of the Csiszár f-divergence for strongly convex functions f, together with particular cases (Kullback–Leibler divergence, $\chi ^{2}$ -divergence, Hellinger divergence, Bhattacharya distance, Jeffreys distance, and Jensen–Shannon divergence.) Furthermore, new estimates for the Shannon entropy are obtained, and new Chebyshev-type inequalities are derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
6.20%
发文量
136
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信