通过非紧凑性度量概念看待序列Ψ-卡普托微分方程的新态度

IF 1.5 3区 数学 Q1 MATHEMATICS
Bahram Agheli, Rahmat Darzi
{"title":"通过非紧凑性度量概念看待序列Ψ-卡普托微分方程的新态度","authors":"Bahram Agheli, Rahmat Darzi","doi":"10.1186/s13660-024-03188-0","DOIUrl":null,"url":null,"abstract":"In this paper, we have explored the existence and uniqueness of solutions for a pair of nonlinear fractional integro-differential equations comprising of the Ψ-Caputo fractional derivative and the Ψ-Riemann–Liouville fractional integral. These equations are subject to nonlocal boundary conditions and a variable coefficient. Our findings are drawn upon the Mittage–Leffler function, Babenko’s attitude, and topological degree theory for condensing maps and the Banach contraction principle. To further elucidate our principal outcomes, we have presented two illustrative examples.","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"9 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New attitude on sequential Ψ-Caputo differential equations via concept of measures of noncompactness\",\"authors\":\"Bahram Agheli, Rahmat Darzi\",\"doi\":\"10.1186/s13660-024-03188-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have explored the existence and uniqueness of solutions for a pair of nonlinear fractional integro-differential equations comprising of the Ψ-Caputo fractional derivative and the Ψ-Riemann–Liouville fractional integral. These equations are subject to nonlocal boundary conditions and a variable coefficient. Our findings are drawn upon the Mittage–Leffler function, Babenko’s attitude, and topological degree theory for condensing maps and the Banach contraction principle. To further elucidate our principal outcomes, we have presented two illustrative examples.\",\"PeriodicalId\":16088,\"journal\":{\"name\":\"Journal of Inequalities and Applications\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inequalities and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13660-024-03188-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03188-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了由Ψ-卡普托分数导数和Ψ-黎曼-利乌维尔分数积分组成的一对非线性分数积分微分方程解的存在性和唯一性。这些方程受制于非局部边界条件和可变系数。我们的研究成果借鉴了米塔格-勒弗勒函数、巴本科态度、凝缩映射的拓扑度理论和巴拿赫收缩原理。为了进一步阐明我们的主要成果,我们提出了两个说明性例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New attitude on sequential Ψ-Caputo differential equations via concept of measures of noncompactness
In this paper, we have explored the existence and uniqueness of solutions for a pair of nonlinear fractional integro-differential equations comprising of the Ψ-Caputo fractional derivative and the Ψ-Riemann–Liouville fractional integral. These equations are subject to nonlocal boundary conditions and a variable coefficient. Our findings are drawn upon the Mittage–Leffler function, Babenko’s attitude, and topological degree theory for condensing maps and the Banach contraction principle. To further elucidate our principal outcomes, we have presented two illustrative examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
6.20%
发文量
136
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信