Samet Erden, Mehmet Zeki Sarıkaya, Burçin Gokkurt Ozdemir, Neslihan Uyanık
{"title":"通过泰勒公式计算卡普托分数导数的维尔廷格型不等式","authors":"Samet Erden, Mehmet Zeki Sarıkaya, Burçin Gokkurt Ozdemir, Neslihan Uyanık","doi":"10.1186/s13660-024-03194-2","DOIUrl":null,"url":null,"abstract":"In this study, we firstly derive a Wirtinger-type result, which gives the connection in between the integral of square of a function and the integral of square of its Caputo fractional derivatives with the help of left-sided and right-sided fractional Taylor’s Formulas. Afterward, we provide a more general inequality involving Caputo fractional derivatives for $L_{r}$ norm with $r>1$ via Hölder’s inequality. Also, similar inequalities for Riemann–Liouville fractional derivatives are presented by means of a relation between Caputo fractional derivatives and Riemann–Liouville fractional derivatives.","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"58 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wirtinger-type inequalities for Caputo fractional derivatives via Taylor’s formula\",\"authors\":\"Samet Erden, Mehmet Zeki Sarıkaya, Burçin Gokkurt Ozdemir, Neslihan Uyanık\",\"doi\":\"10.1186/s13660-024-03194-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we firstly derive a Wirtinger-type result, which gives the connection in between the integral of square of a function and the integral of square of its Caputo fractional derivatives with the help of left-sided and right-sided fractional Taylor’s Formulas. Afterward, we provide a more general inequality involving Caputo fractional derivatives for $L_{r}$ norm with $r>1$ via Hölder’s inequality. Also, similar inequalities for Riemann–Liouville fractional derivatives are presented by means of a relation between Caputo fractional derivatives and Riemann–Liouville fractional derivatives.\",\"PeriodicalId\":16088,\"journal\":{\"name\":\"Journal of Inequalities and Applications\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inequalities and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13660-024-03194-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03194-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Wirtinger-type inequalities for Caputo fractional derivatives via Taylor’s formula
In this study, we firstly derive a Wirtinger-type result, which gives the connection in between the integral of square of a function and the integral of square of its Caputo fractional derivatives with the help of left-sided and right-sided fractional Taylor’s Formulas. Afterward, we provide a more general inequality involving Caputo fractional derivatives for $L_{r}$ norm with $r>1$ via Hölder’s inequality. Also, similar inequalities for Riemann–Liouville fractional derivatives are presented by means of a relation between Caputo fractional derivatives and Riemann–Liouville fractional derivatives.
期刊介绍:
The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.