广义崔-戴维斯-简森算子不等式及其应用

Symmetry Pub Date : 2024-09-09 DOI:10.3390/sym16091176
Shih Yu Chang, Yimin Wei
{"title":"广义崔-戴维斯-简森算子不等式及其应用","authors":"Shih Yu Chang, Yimin Wei","doi":"10.3390/sym16091176","DOIUrl":null,"url":null,"abstract":"The original Choi–Davis–Jensen’s inequality, known for its extensive applications in various scientific and engineering fields, has inspired researchers to pursue its generalizations. In this study, we extend the Choi–Davis–Jensen’s inequality by introducing a nonlinear map instead of a normalized linear map and generalize the concept of operator convex functions to include any continuous function defined within a compact region. Notably, operators can be matrices with structural symmetry, enhancing the scope and applicability of our results. The Stone–Weierstrass theorem and the Kantorovich function play crucial roles in the formulation and proof of these generalized Choi–Davis–Jensen’s inequalities. Furthermore, we demonstrate an application of this generalized inequality in the context of statistical physics.","PeriodicalId":501198,"journal":{"name":"Symmetry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Choi–Davis–Jensen’s Operator Inequalities and Their Applications\",\"authors\":\"Shih Yu Chang, Yimin Wei\",\"doi\":\"10.3390/sym16091176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The original Choi–Davis–Jensen’s inequality, known for its extensive applications in various scientific and engineering fields, has inspired researchers to pursue its generalizations. In this study, we extend the Choi–Davis–Jensen’s inequality by introducing a nonlinear map instead of a normalized linear map and generalize the concept of operator convex functions to include any continuous function defined within a compact region. Notably, operators can be matrices with structural symmetry, enhancing the scope and applicability of our results. The Stone–Weierstrass theorem and the Kantorovich function play crucial roles in the formulation and proof of these generalized Choi–Davis–Jensen’s inequalities. Furthermore, we demonstrate an application of this generalized inequality in the context of statistical physics.\",\"PeriodicalId\":501198,\"journal\":{\"name\":\"Symmetry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/sym16091176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym16091176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最初的 Choi-Davis-Jensen 不等式因其在各种科学和工程领域的广泛应用而闻名,激发了研究人员对其进行推广的热情。在本研究中,我们通过引入非线性映射而不是归一化线性映射来扩展 Choi-Davis-Jensen 不等式,并将算子凸函数的概念推广到定义在紧凑区域内的任何连续函数。值得注意的是,算子可以是具有结构对称性的矩阵,这增强了我们结果的范围和适用性。Stone-Weierstrass 定理和 Kantorovich 函数在这些广义 Choi-Davis-Jensen 不等式的提出和证明中发挥了关键作用。此外,我们还展示了这种广义不等式在统计物理学中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Choi–Davis–Jensen’s Operator Inequalities and Their Applications
The original Choi–Davis–Jensen’s inequality, known for its extensive applications in various scientific and engineering fields, has inspired researchers to pursue its generalizations. In this study, we extend the Choi–Davis–Jensen’s inequality by introducing a nonlinear map instead of a normalized linear map and generalize the concept of operator convex functions to include any continuous function defined within a compact region. Notably, operators can be matrices with structural symmetry, enhancing the scope and applicability of our results. The Stone–Weierstrass theorem and the Kantorovich function play crucial roles in the formulation and proof of these generalized Choi–Davis–Jensen’s inequalities. Furthermore, we demonstrate an application of this generalized inequality in the context of statistical physics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信