埃斯特维兹-曼斯菲尔德-克拉克森方程的列对称分析和显解

Symmetry Pub Date : 2024-09-11 DOI:10.3390/sym16091194
Aliyu Isa Aliyu, Jibrin Sale Yusuf, Malik Muhammad Nauman, Dilber Uzun Ozsahin, Baba Galadima Agaie, Juliana Haji Zaini, Huzaifa Umar
{"title":"埃斯特维兹-曼斯菲尔德-克拉克森方程的列对称分析和显解","authors":"Aliyu Isa Aliyu, Jibrin Sale Yusuf, Malik Muhammad Nauman, Dilber Uzun Ozsahin, Baba Galadima Agaie, Juliana Haji Zaini, Huzaifa Umar","doi":"10.3390/sym16091194","DOIUrl":null,"url":null,"abstract":"In this study, we investigate the symmetry analysis and explicit solutions for the Estevez–Mansfield–Clarkson (EMC) equation. Our main objectives are to identify the Lie point symmetries of the EMC equation, construct an optimal system of one-dimensional subalgebras, and reduce the EMC equation to a set of ordinary differential equations (ODEs). We employ the Riccati–Bernoulli sub-ODE method (RBSODE) to solve these reduced ODEs and obtain explicit solutions for the EMC model. The obtained solutions are validated using numerical analyses, and corresponding figures are presented to illustrate the physical implications of the derived solutions.","PeriodicalId":501198,"journal":{"name":"Symmetry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lie Symmetry Analysis and Explicit Solutions to the Estevez–Mansfield–Clarkson Equation\",\"authors\":\"Aliyu Isa Aliyu, Jibrin Sale Yusuf, Malik Muhammad Nauman, Dilber Uzun Ozsahin, Baba Galadima Agaie, Juliana Haji Zaini, Huzaifa Umar\",\"doi\":\"10.3390/sym16091194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we investigate the symmetry analysis and explicit solutions for the Estevez–Mansfield–Clarkson (EMC) equation. Our main objectives are to identify the Lie point symmetries of the EMC equation, construct an optimal system of one-dimensional subalgebras, and reduce the EMC equation to a set of ordinary differential equations (ODEs). We employ the Riccati–Bernoulli sub-ODE method (RBSODE) to solve these reduced ODEs and obtain explicit solutions for the EMC model. The obtained solutions are validated using numerical analyses, and corresponding figures are presented to illustrate the physical implications of the derived solutions.\",\"PeriodicalId\":501198,\"journal\":{\"name\":\"Symmetry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/sym16091194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym16091194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们研究了 Estevez-Mansfield-Clarkson (EMC) 方程的对称性分析和显式解。我们的主要目标是确定 EMC 方程的列点对称性,构建一维子代数的最优系统,并将 EMC 方程简化为一组常微分方程 (ODE)。我们采用 Riccati-Bernoulli subODE 方法(RBSODE)求解这些还原的 ODEs,并获得 EMC 模型的显式解。我们通过数值分析验证了所获得的解,并给出了相应的数字来说明所推导解的物理意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lie Symmetry Analysis and Explicit Solutions to the Estevez–Mansfield–Clarkson Equation
In this study, we investigate the symmetry analysis and explicit solutions for the Estevez–Mansfield–Clarkson (EMC) equation. Our main objectives are to identify the Lie point symmetries of the EMC equation, construct an optimal system of one-dimensional subalgebras, and reduce the EMC equation to a set of ordinary differential equations (ODEs). We employ the Riccati–Bernoulli sub-ODE method (RBSODE) to solve these reduced ODEs and obtain explicit solutions for the EMC model. The obtained solutions are validated using numerical analyses, and corresponding figures are presented to illustrate the physical implications of the derived solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信