基于无人机的梨园液体授粉应用参数优化:产量与成本视角

Agronomy Pub Date : 2024-09-06 DOI:10.3390/agronomy14092033
Pei Wang, Moxin He, Mingqi Li, Yuheng Yang, Hui Li, Wanpeng Xi, Tong Zhang
{"title":"基于无人机的梨园液体授粉应用参数优化:产量与成本视角","authors":"Pei Wang, Moxin He, Mingqi Li, Yuheng Yang, Hui Li, Wanpeng Xi, Tong Zhang","doi":"10.3390/agronomy14092033","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicle (UAV) liquid pollination emerges as a promising substitute for hand pollination methods. In this study, the relationship between UAV liquid pollination and fruit thinning operations was explored from the perspective of practical application. By testing droplet deposition under various flight parameters, the flight parameters for a specific pear orchard were optimized to ensure the uniform and effective distribution of the pollination solution. Results indicated that optimal droplet density (number·cm−2), area coverage (%), and deposition rate (μL·cm−2) were achieved at a flight height (FH) of 1.5 m and a flight speed (FS) of 2 m·s−1. Considering the nuanced physiological attributes of pear tree flowers during their pollination phase, the research scrutinizes the impact of application parameters such as floral stage and spraying frequency on pollination efficiency. A two-way ANOVA analysis demonstrated significant impacts of floral stage, spraying frequency, and their interaction on the fruit set rate (p < 0.01). Controlling pollination parameters can effectively regulate the fruit set rate, thereby influencing the cost and efficiency of fruit thinning. These findings contribute a theoretical framework for formulating customized pollination management strategies tailored to the specific needs of pear orchards.","PeriodicalId":7601,"journal":{"name":"Agronomy","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Application Parameters for UAV-Based Liquid Pollination in Pear Orchards: A Yield and Cost Perspective\",\"authors\":\"Pei Wang, Moxin He, Mingqi Li, Yuheng Yang, Hui Li, Wanpeng Xi, Tong Zhang\",\"doi\":\"10.3390/agronomy14092033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned aerial vehicle (UAV) liquid pollination emerges as a promising substitute for hand pollination methods. In this study, the relationship between UAV liquid pollination and fruit thinning operations was explored from the perspective of practical application. By testing droplet deposition under various flight parameters, the flight parameters for a specific pear orchard were optimized to ensure the uniform and effective distribution of the pollination solution. Results indicated that optimal droplet density (number·cm−2), area coverage (%), and deposition rate (μL·cm−2) were achieved at a flight height (FH) of 1.5 m and a flight speed (FS) of 2 m·s−1. Considering the nuanced physiological attributes of pear tree flowers during their pollination phase, the research scrutinizes the impact of application parameters such as floral stage and spraying frequency on pollination efficiency. A two-way ANOVA analysis demonstrated significant impacts of floral stage, spraying frequency, and their interaction on the fruit set rate (p < 0.01). Controlling pollination parameters can effectively regulate the fruit set rate, thereby influencing the cost and efficiency of fruit thinning. These findings contribute a theoretical framework for formulating customized pollination management strategies tailored to the specific needs of pear orchards.\",\"PeriodicalId\":7601,\"journal\":{\"name\":\"Agronomy\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/agronomy14092033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/agronomy14092033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无人驾驶飞行器(UAV)液态授粉作为人工授粉方法的替代品前景广阔。本研究从实际应用的角度探讨了无人机液体授粉与疏果作业之间的关系。通过测试不同飞行参数下的液滴沉积情况,对特定梨园的飞行参数进行了优化,以确保授粉液的均匀和有效分布。结果表明,当飞行高度(FH)为 1.5 米、飞行速度(FS)为 2 米-秒-1 时,可实现最佳的液滴密度(数量-厘米-2)、面积覆盖率(%)和沉积率(μL-厘米-2)。考虑到梨树花朵在授粉期的细微生理特性,研究仔细探讨了花期和喷洒频率等施药参数对授粉效率的影响。双向方差分析表明,花期、喷洒频率及其交互作用对坐果率有显著影响(p < 0.01)。控制授粉参数可有效调节坐果率,从而影响疏果的成本和效率。这些发现为根据梨园的具体需求制定个性化授粉管理策略提供了理论框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Application Parameters for UAV-Based Liquid Pollination in Pear Orchards: A Yield and Cost Perspective
Unmanned aerial vehicle (UAV) liquid pollination emerges as a promising substitute for hand pollination methods. In this study, the relationship between UAV liquid pollination and fruit thinning operations was explored from the perspective of practical application. By testing droplet deposition under various flight parameters, the flight parameters for a specific pear orchard were optimized to ensure the uniform and effective distribution of the pollination solution. Results indicated that optimal droplet density (number·cm−2), area coverage (%), and deposition rate (μL·cm−2) were achieved at a flight height (FH) of 1.5 m and a flight speed (FS) of 2 m·s−1. Considering the nuanced physiological attributes of pear tree flowers during their pollination phase, the research scrutinizes the impact of application parameters such as floral stage and spraying frequency on pollination efficiency. A two-way ANOVA analysis demonstrated significant impacts of floral stage, spraying frequency, and their interaction on the fruit set rate (p < 0.01). Controlling pollination parameters can effectively regulate the fruit set rate, thereby influencing the cost and efficiency of fruit thinning. These findings contribute a theoretical framework for formulating customized pollination management strategies tailored to the specific needs of pear orchards.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信