{"title":"跨资源客户协作的高效联合学习","authors":"Qi Shen, Liu Yang","doi":"10.1007/s13042-024-02313-1","DOIUrl":null,"url":null,"abstract":"<p>Federated learning is a distributed machine learning paradigm. Traditional federated learning performs well on the premise that all clients have the same learning ability or similar learning tasks. However, resource and data heterogeneity are inevitable among clients in real-world scenarios, leading to the situation that existing federated learning mechanisms cannot achieve high accuracy in short response time. In this study, an effective federated learning framework with cross-resource client collaboration, termed CEFL, is proposed to coordinate clients with different capacities to help each other, efficiently and adequately reflecting collective intelligence. Clients are categorized into different clusters based on their computational resources in the hierarchical framework. Resource-rich clusters use their knowledge to assist resource-limited clusters converge rapidly. Once resource-limited clusters have the ability to mentor others, resource-rich clusters learn from the resource-limited clusters in their favor to improve their own effectiveness. A cloud server provides tailored assistance to each cluster with a personalized model through an adaptive multi-similarity metric, in order for each cluster to learn the most useful knowledge. The experiments fully demonstrate that the proposed method not only has superior accuracy with significantly reduced latency but also improves the convergence rate compared to other state-of-the-art federated learning methods in addressing the problem of resource and data heterogeneity.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":"73 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient federated learning with cross-resource client collaboration\",\"authors\":\"Qi Shen, Liu Yang\",\"doi\":\"10.1007/s13042-024-02313-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Federated learning is a distributed machine learning paradigm. Traditional federated learning performs well on the premise that all clients have the same learning ability or similar learning tasks. However, resource and data heterogeneity are inevitable among clients in real-world scenarios, leading to the situation that existing federated learning mechanisms cannot achieve high accuracy in short response time. In this study, an effective federated learning framework with cross-resource client collaboration, termed CEFL, is proposed to coordinate clients with different capacities to help each other, efficiently and adequately reflecting collective intelligence. Clients are categorized into different clusters based on their computational resources in the hierarchical framework. Resource-rich clusters use their knowledge to assist resource-limited clusters converge rapidly. Once resource-limited clusters have the ability to mentor others, resource-rich clusters learn from the resource-limited clusters in their favor to improve their own effectiveness. A cloud server provides tailored assistance to each cluster with a personalized model through an adaptive multi-similarity metric, in order for each cluster to learn the most useful knowledge. The experiments fully demonstrate that the proposed method not only has superior accuracy with significantly reduced latency but also improves the convergence rate compared to other state-of-the-art federated learning methods in addressing the problem of resource and data heterogeneity.</p>\",\"PeriodicalId\":51327,\"journal\":{\"name\":\"International Journal of Machine Learning and Cybernetics\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Learning and Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s13042-024-02313-1\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02313-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Efficient federated learning with cross-resource client collaboration
Federated learning is a distributed machine learning paradigm. Traditional federated learning performs well on the premise that all clients have the same learning ability or similar learning tasks. However, resource and data heterogeneity are inevitable among clients in real-world scenarios, leading to the situation that existing federated learning mechanisms cannot achieve high accuracy in short response time. In this study, an effective federated learning framework with cross-resource client collaboration, termed CEFL, is proposed to coordinate clients with different capacities to help each other, efficiently and adequately reflecting collective intelligence. Clients are categorized into different clusters based on their computational resources in the hierarchical framework. Resource-rich clusters use their knowledge to assist resource-limited clusters converge rapidly. Once resource-limited clusters have the ability to mentor others, resource-rich clusters learn from the resource-limited clusters in their favor to improve their own effectiveness. A cloud server provides tailored assistance to each cluster with a personalized model through an adaptive multi-similarity metric, in order for each cluster to learn the most useful knowledge. The experiments fully demonstrate that the proposed method not only has superior accuracy with significantly reduced latency but also improves the convergence rate compared to other state-of-the-art federated learning methods in addressing the problem of resource and data heterogeneity.
期刊介绍:
Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data.
The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC.
Key research areas to be covered by the journal include:
Machine Learning for modeling interactions between systems
Pattern Recognition technology to support discovery of system-environment interaction
Control of system-environment interactions
Biochemical interaction in biological and biologically-inspired systems
Learning for improvement of communication schemes between systems