从高维网络物理数据流中学习:大规模智能电网案例

IF 3.1 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hossein Hassani, Ehsan Hallaji, Roozbeh Razavi-Far, Mehrdad Saif
{"title":"从高维网络物理数据流中学习:大规模智能电网案例","authors":"Hossein Hassani, Ehsan Hallaji, Roozbeh Razavi-Far, Mehrdad Saif","doi":"10.1007/s13042-024-02365-3","DOIUrl":null,"url":null,"abstract":"<p>Quality of data and complexity of decision boundaries in high-dimensional data streams that are collected from cyber-physical power systems can greatly influence the process of learning from data and diagnosing faults in such critical systems. These systems generate massive amounts of data that overburden the system with excessive computational costs. Another issue is the presence of noise in recorded measurements that poses a challenge to the learning process, leading to a degradation in the performance of fault diagnosis. Furthermore, the diagnostic model is often provided with a mixture of redundant measurements that may deviate it from learning normal and fault distributions. This paper presents the effect of feature engineering on mitigating the aforementioned challenges in learning from data streams collected from cyber-physical systems. A data-driven fault diagnosis framework for a 118-bus power system is constructed by integrating feature selection, dimensionality reduction methods, and decision models. A comparative study is enabled accordingly to compare several advanced techniques in both domains. Dimensionality reduction and feature selection methods are compared both jointly and separately. Finally, experiments are concluded, and a setting is suggested that enhances data quality for fault diagnosis.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning from high-dimensional cyber-physical data streams: a case of large-scale smart grid\",\"authors\":\"Hossein Hassani, Ehsan Hallaji, Roozbeh Razavi-Far, Mehrdad Saif\",\"doi\":\"10.1007/s13042-024-02365-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quality of data and complexity of decision boundaries in high-dimensional data streams that are collected from cyber-physical power systems can greatly influence the process of learning from data and diagnosing faults in such critical systems. These systems generate massive amounts of data that overburden the system with excessive computational costs. Another issue is the presence of noise in recorded measurements that poses a challenge to the learning process, leading to a degradation in the performance of fault diagnosis. Furthermore, the diagnostic model is often provided with a mixture of redundant measurements that may deviate it from learning normal and fault distributions. This paper presents the effect of feature engineering on mitigating the aforementioned challenges in learning from data streams collected from cyber-physical systems. A data-driven fault diagnosis framework for a 118-bus power system is constructed by integrating feature selection, dimensionality reduction methods, and decision models. A comparative study is enabled accordingly to compare several advanced techniques in both domains. Dimensionality reduction and feature selection methods are compared both jointly and separately. Finally, experiments are concluded, and a setting is suggested that enhances data quality for fault diagnosis.</p>\",\"PeriodicalId\":51327,\"journal\":{\"name\":\"International Journal of Machine Learning and Cybernetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Learning and Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s13042-024-02365-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02365-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

从网络物理电力系统收集的高维数据流中的数据质量和决策边界的复杂性会极大地影响从数据中学习和诊断此类关键系统故障的过程。这些系统会产生海量数据,计算成本过高,使系统不堪重负。另一个问题是记录的测量数据中存在噪声,这对学习过程提出了挑战,导致故障诊断性能下降。此外,诊断模型通常由冗余测量数据混合而成,可能会偏离学习正常分布和故障分布。本文介绍了特征工程对减轻从网络物理系统收集的数据流中学习的上述挑战的影响。通过整合特征选择、降维方法和决策模型,构建了 118-bus 电力系统的数据驱动故障诊断框架。相应地,还进行了一项比较研究,对这两个领域的几种先进技术进行了比较。对降维方法和特征选择方法进行了联合和单独比较。最后,对实验进行了总结,并提出了提高故障诊断数据质量的设置建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Learning from high-dimensional cyber-physical data streams: a case of large-scale smart grid

Learning from high-dimensional cyber-physical data streams: a case of large-scale smart grid

Quality of data and complexity of decision boundaries in high-dimensional data streams that are collected from cyber-physical power systems can greatly influence the process of learning from data and diagnosing faults in such critical systems. These systems generate massive amounts of data that overburden the system with excessive computational costs. Another issue is the presence of noise in recorded measurements that poses a challenge to the learning process, leading to a degradation in the performance of fault diagnosis. Furthermore, the diagnostic model is often provided with a mixture of redundant measurements that may deviate it from learning normal and fault distributions. This paper presents the effect of feature engineering on mitigating the aforementioned challenges in learning from data streams collected from cyber-physical systems. A data-driven fault diagnosis framework for a 118-bus power system is constructed by integrating feature selection, dimensionality reduction methods, and decision models. A comparative study is enabled accordingly to compare several advanced techniques in both domains. Dimensionality reduction and feature selection methods are compared both jointly and separately. Finally, experiments are concluded, and a setting is suggested that enhances data quality for fault diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Machine Learning and Cybernetics
International Journal of Machine Learning and Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
7.90
自引率
10.70%
发文量
225
期刊介绍: Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data. The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC. Key research areas to be covered by the journal include: Machine Learning for modeling interactions between systems Pattern Recognition technology to support discovery of system-environment interaction Control of system-environment interactions Biochemical interaction in biological and biologically-inspired systems Learning for improvement of communication schemes between systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信