{"title":"利用通用和特定标签特征融合空间进行标签分布学习","authors":"Ziyun Zhang, Jing Wang, Xin Geng","doi":"10.1007/s13042-024-02351-9","DOIUrl":null,"url":null,"abstract":"<p>Label Distribution Learning (LDL) is a novel machine learning paradigm that focuses on the description degrees of labels to a particular instance. Existing LDL algorithms generally learn with the original input space, that is, all features are simply employed in the discrimination processes of all class labels. However, this common-used data representation strategy ignores that each label is supposed to possess some specific characteristics of its own and therefore, may lead to sub-optimal performance. We propose label distribution learning by utilizing common and label-specific feature fusion space (LDL-CLSFS) in this paper. It first partitions all instances by label-value rankings. Second, it constructs label-specific features of each label by conducting clustering analysis on different instance categories. Third, it performs training and testing by querying the clustering results. Comprehensive experiments on several real-world label distribution data sets validate the superiority of our method against other LDL algorithms as well as the effectiveness of label-specific features.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":"54 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Label distribution learning by utilizing common and label-specific feature fusion space\",\"authors\":\"Ziyun Zhang, Jing Wang, Xin Geng\",\"doi\":\"10.1007/s13042-024-02351-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Label Distribution Learning (LDL) is a novel machine learning paradigm that focuses on the description degrees of labels to a particular instance. Existing LDL algorithms generally learn with the original input space, that is, all features are simply employed in the discrimination processes of all class labels. However, this common-used data representation strategy ignores that each label is supposed to possess some specific characteristics of its own and therefore, may lead to sub-optimal performance. We propose label distribution learning by utilizing common and label-specific feature fusion space (LDL-CLSFS) in this paper. It first partitions all instances by label-value rankings. Second, it constructs label-specific features of each label by conducting clustering analysis on different instance categories. Third, it performs training and testing by querying the clustering results. Comprehensive experiments on several real-world label distribution data sets validate the superiority of our method against other LDL algorithms as well as the effectiveness of label-specific features.</p>\",\"PeriodicalId\":51327,\"journal\":{\"name\":\"International Journal of Machine Learning and Cybernetics\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Learning and Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s13042-024-02351-9\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02351-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Label distribution learning by utilizing common and label-specific feature fusion space
Label Distribution Learning (LDL) is a novel machine learning paradigm that focuses on the description degrees of labels to a particular instance. Existing LDL algorithms generally learn with the original input space, that is, all features are simply employed in the discrimination processes of all class labels. However, this common-used data representation strategy ignores that each label is supposed to possess some specific characteristics of its own and therefore, may lead to sub-optimal performance. We propose label distribution learning by utilizing common and label-specific feature fusion space (LDL-CLSFS) in this paper. It first partitions all instances by label-value rankings. Second, it constructs label-specific features of each label by conducting clustering analysis on different instance categories. Third, it performs training and testing by querying the clustering results. Comprehensive experiments on several real-world label distribution data sets validate the superiority of our method against other LDL algorithms as well as the effectiveness of label-specific features.
期刊介绍:
Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data.
The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC.
Key research areas to be covered by the journal include:
Machine Learning for modeling interactions between systems
Pattern Recognition technology to support discovery of system-environment interaction
Control of system-environment interactions
Biochemical interaction in biological and biologically-inspired systems
Learning for improvement of communication schemes between systems