Alhanouf Ali Alhomaidhi, Sami Alabiad, Nawal A. Alsarori
{"title":"Fpm + uFpm + vFpm + wFpm 上线性编码的生成矩阵和对称权值枚举器","authors":"Alhanouf Ali Alhomaidhi, Sami Alabiad, Nawal A. Alsarori","doi":"10.3390/sym16091169","DOIUrl":null,"url":null,"abstract":"Let u,v, and w be indeterminates over Fpm and let R=Fpm+uFpm+vFpm+wFpm, where p is a prime. Then, R is a ring of order p4m, and R≅Fpm[u,v,w]I with maximal ideal J=uFpm+vFpm+wFpm of order p3m and a residue field Fpm of order pm, where I is an appropriate ideal. In this article, the goal is to improve the understanding of linear codes over local non-chain rings. In particular, we investigate the symmetrized weight enumerators and generator matrices of linear codes of length N over R. In order to accomplish that, we first list all such rings up to the isomorphism for different values of the index of nilpotency l of J, 2≤l≤4. Furthermore, we fully describe the lattice of ideals of R and their orders. Next, for linear codes C over R, we compute the generator matrices and symmetrized weight enumerators, as shown by numerical examples.","PeriodicalId":501198,"journal":{"name":"Symmetry","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generator Matrices and Symmetrized Weight Enumerators of Linear Codes over Fpm + uFpm + vFpm + wFpm\",\"authors\":\"Alhanouf Ali Alhomaidhi, Sami Alabiad, Nawal A. Alsarori\",\"doi\":\"10.3390/sym16091169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let u,v, and w be indeterminates over Fpm and let R=Fpm+uFpm+vFpm+wFpm, where p is a prime. Then, R is a ring of order p4m, and R≅Fpm[u,v,w]I with maximal ideal J=uFpm+vFpm+wFpm of order p3m and a residue field Fpm of order pm, where I is an appropriate ideal. In this article, the goal is to improve the understanding of linear codes over local non-chain rings. In particular, we investigate the symmetrized weight enumerators and generator matrices of linear codes of length N over R. In order to accomplish that, we first list all such rings up to the isomorphism for different values of the index of nilpotency l of J, 2≤l≤4. Furthermore, we fully describe the lattice of ideals of R and their orders. Next, for linear codes C over R, we compute the generator matrices and symmetrized weight enumerators, as shown by numerical examples.\",\"PeriodicalId\":501198,\"journal\":{\"name\":\"Symmetry\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/sym16091169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym16091169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设 u、v、w 是 Fpm 上的不定项,设 R=Fpm+uFpm+vFpm+wFpm ,其中 p 是素数。那么,R 是阶 p4m 的环,R≅Fpm[u,v,w]I 具有阶 p3m 的最大理想 J=uFpm+vFpm+wFpm 和阶 pm 的残差域 Fpm,其中 I 是一个适当的理想。本文旨在加深对局部非链环上线性编码的理解。为了实现这一目标,我们首先列出了在 J 的无幂指数 l 的不同值(2≤l≤4)下直到同构的所有此类环。此外,我们还完整地描述了 R 的理想晶格及其阶数。接下来,对于 R 上的线性编码 C,我们计算了生成矩阵和对称权枚举器,并通过数值示例进行了说明。
Generator Matrices and Symmetrized Weight Enumerators of Linear Codes over Fpm + uFpm + vFpm + wFpm
Let u,v, and w be indeterminates over Fpm and let R=Fpm+uFpm+vFpm+wFpm, where p is a prime. Then, R is a ring of order p4m, and R≅Fpm[u,v,w]I with maximal ideal J=uFpm+vFpm+wFpm of order p3m and a residue field Fpm of order pm, where I is an appropriate ideal. In this article, the goal is to improve the understanding of linear codes over local non-chain rings. In particular, we investigate the symmetrized weight enumerators and generator matrices of linear codes of length N over R. In order to accomplish that, we first list all such rings up to the isomorphism for different values of the index of nilpotency l of J, 2≤l≤4. Furthermore, we fully describe the lattice of ideals of R and their orders. Next, for linear codes C over R, we compute the generator matrices and symmetrized weight enumerators, as shown by numerical examples.