{"title":"由脉冲控制的随机系统的线性二次优化控制问题","authors":"Vasile Dragan, Ioan-Lucian Popa","doi":"10.3390/sym16091170","DOIUrl":null,"url":null,"abstract":"This paper focuses on addressing the linear quadratic (LQ) optimal control problem on an infinite time horizon for stochastic systems controlled by impulses. No constraint regarding the sign of the quadratic functional is applied. That is why our first concern is to find conditions which guarantee that the considered optimal control problem is well posed. Then, when the optimal control problem is well posed, it is natural to look for conditions which guarantee the attainability of the optimal control problem that is being evaluated. The main tool involved in the solution of the problems stated before is a backward jump matrix linear differential equation (BJMLDE) with a Riccati-type jumping operator. This is formulated using the matrix coefficients of the controlled system and the weight matrices of the performance criterion. We show that the well posedness of the optimal control problem under investigation is guaranteed by the existence of the maximal and bounded solution of the associated BJMLDE with a Riccati-type jumping operator. Further, we show that when the associated BJMLDE with a Riccati-type jumping operator has a maximal solution which satisfies a suitable sign condition, then the optimal control problem is attainable if and only if it has an optimal control in a state feedback form, or if and only if the maximal solution of the BJMLDE with a Riccati-type jumping operator is a stabilizing solution. In order to make the paper more self-contained, we present a set of conditions that correspond to the existence of the maximal solution of the BJMLDE satisfying the desired sign condition.","PeriodicalId":501198,"journal":{"name":"Symmetry","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Linear Quadratic Optimal Control Problem for Stochastic Systems Controlled by Impulses\",\"authors\":\"Vasile Dragan, Ioan-Lucian Popa\",\"doi\":\"10.3390/sym16091170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on addressing the linear quadratic (LQ) optimal control problem on an infinite time horizon for stochastic systems controlled by impulses. No constraint regarding the sign of the quadratic functional is applied. That is why our first concern is to find conditions which guarantee that the considered optimal control problem is well posed. Then, when the optimal control problem is well posed, it is natural to look for conditions which guarantee the attainability of the optimal control problem that is being evaluated. The main tool involved in the solution of the problems stated before is a backward jump matrix linear differential equation (BJMLDE) with a Riccati-type jumping operator. This is formulated using the matrix coefficients of the controlled system and the weight matrices of the performance criterion. We show that the well posedness of the optimal control problem under investigation is guaranteed by the existence of the maximal and bounded solution of the associated BJMLDE with a Riccati-type jumping operator. Further, we show that when the associated BJMLDE with a Riccati-type jumping operator has a maximal solution which satisfies a suitable sign condition, then the optimal control problem is attainable if and only if it has an optimal control in a state feedback form, or if and only if the maximal solution of the BJMLDE with a Riccati-type jumping operator is a stabilizing solution. In order to make the paper more self-contained, we present a set of conditions that correspond to the existence of the maximal solution of the BJMLDE satisfying the desired sign condition.\",\"PeriodicalId\":501198,\"journal\":{\"name\":\"Symmetry\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/sym16091170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym16091170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Linear Quadratic Optimal Control Problem for Stochastic Systems Controlled by Impulses
This paper focuses on addressing the linear quadratic (LQ) optimal control problem on an infinite time horizon for stochastic systems controlled by impulses. No constraint regarding the sign of the quadratic functional is applied. That is why our first concern is to find conditions which guarantee that the considered optimal control problem is well posed. Then, when the optimal control problem is well posed, it is natural to look for conditions which guarantee the attainability of the optimal control problem that is being evaluated. The main tool involved in the solution of the problems stated before is a backward jump matrix linear differential equation (BJMLDE) with a Riccati-type jumping operator. This is formulated using the matrix coefficients of the controlled system and the weight matrices of the performance criterion. We show that the well posedness of the optimal control problem under investigation is guaranteed by the existence of the maximal and bounded solution of the associated BJMLDE with a Riccati-type jumping operator. Further, we show that when the associated BJMLDE with a Riccati-type jumping operator has a maximal solution which satisfies a suitable sign condition, then the optimal control problem is attainable if and only if it has an optimal control in a state feedback form, or if and only if the maximal solution of the BJMLDE with a Riccati-type jumping operator is a stabilizing solution. In order to make the paper more self-contained, we present a set of conditions that correspond to the existence of the maximal solution of the BJMLDE satisfying the desired sign condition.