{"title":"层流条件下 FDA 基准喷嘴几何形状内的血液损伤分析:预测对软件和非牛顿粘度模型的敏感性","authors":"Gautham Krishnamoorthy, Nasim Gholizadeh","doi":"10.3390/sym16091165","DOIUrl":null,"url":null,"abstract":"There is a prevailing consensus that most Computational Fluid Dynamics (CFD) frameworks can accurately predict global variables under laminar flow conditions within the Food and Drug Administration (FDA) benchmark nozzle geometry. However, variations in derived variables, such as strain rate and vorticity, may arise due to differences in numerical solvers and gradient evaluation methods, which can subsequently impact predictions related to blood damage and non-Newtonian flow behavior. To examine this, flow symmetry indices, vortex characteristics, and blood damage—were assessed using Newtonian and four non-Newtonian viscosity models with CFD codes Ansys Fluent and OpenFOAM on identical meshes. At Reynolds number (Re) 500, symmetry breakdown and complex vortex shapes were predicted with some non-Newtonian models in both OpenFOAM and Ansys Fluent, whereas these phenomena were not observed with the Newtonian model. This contradicted the expectation that employing a non-Newtonian model would delay the onset of turbulence. Similarly, at Re 2000, symmetry breakdown occurred sooner (following the sudden expansion section) with the non-Newtonian models in both Ansys Fluent and OpenFOAM. Vortex identification based on the Q-criterion resulted in distinctly different vortex shapes in Ansys Fluent and OpenFOAM. Blood damage assessments showed greater prediction variations among the non-Newtonian models at lower Reynolds numbers.","PeriodicalId":501198,"journal":{"name":"Symmetry","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blood Damage Analysis within the FDA Benchmark Nozzle Geometry at Laminar Conditions: Prediction Sensitivities to Software and Non-Newtonian Viscosity Models\",\"authors\":\"Gautham Krishnamoorthy, Nasim Gholizadeh\",\"doi\":\"10.3390/sym16091165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a prevailing consensus that most Computational Fluid Dynamics (CFD) frameworks can accurately predict global variables under laminar flow conditions within the Food and Drug Administration (FDA) benchmark nozzle geometry. However, variations in derived variables, such as strain rate and vorticity, may arise due to differences in numerical solvers and gradient evaluation methods, which can subsequently impact predictions related to blood damage and non-Newtonian flow behavior. To examine this, flow symmetry indices, vortex characteristics, and blood damage—were assessed using Newtonian and four non-Newtonian viscosity models with CFD codes Ansys Fluent and OpenFOAM on identical meshes. At Reynolds number (Re) 500, symmetry breakdown and complex vortex shapes were predicted with some non-Newtonian models in both OpenFOAM and Ansys Fluent, whereas these phenomena were not observed with the Newtonian model. This contradicted the expectation that employing a non-Newtonian model would delay the onset of turbulence. Similarly, at Re 2000, symmetry breakdown occurred sooner (following the sudden expansion section) with the non-Newtonian models in both Ansys Fluent and OpenFOAM. Vortex identification based on the Q-criterion resulted in distinctly different vortex shapes in Ansys Fluent and OpenFOAM. Blood damage assessments showed greater prediction variations among the non-Newtonian models at lower Reynolds numbers.\",\"PeriodicalId\":501198,\"journal\":{\"name\":\"Symmetry\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/sym16091165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym16091165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Blood Damage Analysis within the FDA Benchmark Nozzle Geometry at Laminar Conditions: Prediction Sensitivities to Software and Non-Newtonian Viscosity Models
There is a prevailing consensus that most Computational Fluid Dynamics (CFD) frameworks can accurately predict global variables under laminar flow conditions within the Food and Drug Administration (FDA) benchmark nozzle geometry. However, variations in derived variables, such as strain rate and vorticity, may arise due to differences in numerical solvers and gradient evaluation methods, which can subsequently impact predictions related to blood damage and non-Newtonian flow behavior. To examine this, flow symmetry indices, vortex characteristics, and blood damage—were assessed using Newtonian and four non-Newtonian viscosity models with CFD codes Ansys Fluent and OpenFOAM on identical meshes. At Reynolds number (Re) 500, symmetry breakdown and complex vortex shapes were predicted with some non-Newtonian models in both OpenFOAM and Ansys Fluent, whereas these phenomena were not observed with the Newtonian model. This contradicted the expectation that employing a non-Newtonian model would delay the onset of turbulence. Similarly, at Re 2000, symmetry breakdown occurred sooner (following the sudden expansion section) with the non-Newtonian models in both Ansys Fluent and OpenFOAM. Vortex identification based on the Q-criterion resulted in distinctly different vortex shapes in Ansys Fluent and OpenFOAM. Blood damage assessments showed greater prediction variations among the non-Newtonian models at lower Reynolds numbers.