半可分函数和条件直至撤回

IF 0.6 4区 数学 Q3 MATHEMATICS
Alessandro Ardizzoni, Lucrezia Bottegoni
{"title":"半可分函数和条件直至撤回","authors":"Alessandro Ardizzoni,&nbsp;Lucrezia Bottegoni","doi":"10.1007/s10485-024-09782-z","DOIUrl":null,"url":null,"abstract":"<div><p>In a previous paper we introduced the concept of semiseparable functor. Here we continue our study of these functors in connection with idempotent (Cauchy) completion. To this aim, we introduce and investigate the notions of (co)reflection and bireflection up to retracts. We show that the (co)comparison functor attached to an adjunction whose associated (co)monad is separable is a coreflection (reflection) up to retracts. This fact allows us to prove that a right (left) adjoint functor is semiseparable if and only if the associated (co)monad is separable and the (co)comparison functor is a bireflection up to retracts, extending a characterization pursued by X.-W. Chen in the separable case. Finally, we provide a semi-analogue of a result obtained by P. Balmer in the framework of pre-triangulated categories.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"32 5","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-024-09782-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Semiseparable Functors and Conditions up to Retracts\",\"authors\":\"Alessandro Ardizzoni,&nbsp;Lucrezia Bottegoni\",\"doi\":\"10.1007/s10485-024-09782-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In a previous paper we introduced the concept of semiseparable functor. Here we continue our study of these functors in connection with idempotent (Cauchy) completion. To this aim, we introduce and investigate the notions of (co)reflection and bireflection up to retracts. We show that the (co)comparison functor attached to an adjunction whose associated (co)monad is separable is a coreflection (reflection) up to retracts. This fact allows us to prove that a right (left) adjoint functor is semiseparable if and only if the associated (co)monad is separable and the (co)comparison functor is a bireflection up to retracts, extending a characterization pursued by X.-W. Chen in the separable case. Finally, we provide a semi-analogue of a result obtained by P. Balmer in the framework of pre-triangulated categories.</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":\"32 5\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10485-024-09782-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-024-09782-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-024-09782-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在前一篇论文中,我们介绍了半可分割函子的概念。在这里,我们将继续研究这些与幂等(考奇)完备相关的函数。为此,我们引入并研究了(共)反射和双折射的概念。我们证明,(共)比较函子附着于一个相关(共)单元是可分的迭加,是一个直到缩回的核反射(反射)。这一事实使我们能够证明,当且仅当相关的(共)单体是可分的,并且(共)比较函子是一个直到缩回的双反射时,右(左)邻接函子是半可分的。Chen 在可分情况下所追求的特征。最后,我们提供了巴尔默(P. Balmer)在前三角范畴框架中得到的一个半对应结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semiseparable Functors and Conditions up to Retracts

In a previous paper we introduced the concept of semiseparable functor. Here we continue our study of these functors in connection with idempotent (Cauchy) completion. To this aim, we introduce and investigate the notions of (co)reflection and bireflection up to retracts. We show that the (co)comparison functor attached to an adjunction whose associated (co)monad is separable is a coreflection (reflection) up to retracts. This fact allows us to prove that a right (left) adjoint functor is semiseparable if and only if the associated (co)monad is separable and the (co)comparison functor is a bireflection up to retracts, extending a characterization pursued by X.-W. Chen in the separable case. Finally, we provide a semi-analogue of a result obtained by P. Balmer in the framework of pre-triangulated categories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信