{"title":"斜坡地形中丙烷气体泄漏和扩散规律的数值模拟研究","authors":"Tingting Luan, Xiaoyun Li, Lixun Wang, Yun Chu, Qinghang Zhang, Xinyu Zhang","doi":"10.1002/prs.12646","DOIUrl":null,"url":null,"abstract":"It is frequent that gas leakage accidents occur at chemical enterprises located in slope terrain. Meet the requirement of urgently studying the gas leakage and diffusion law in slope terrain. In this study, we utilize computational fluid dynamics (CFD) to simulate the scenarios of propane leakage and diffusion under four distinct slope conditions, which are 0°, 10°, 15°, and 20°. The gas diffusion law under different slopes is investigated, and the influence of wind speed and wind direction on the diffusion process is also further analyzed. The study indicates that when the slope exceeds 15°, the change in slope exerts a pronounced influence on the dispersion of propane leakage. Compared with diffusion on flat ground, there is a distinct propane aggregation area at the bottom of the slope terrain. Also, the steeper the slope, the more noticeable the aggregation phenomenon. The increase of wind speed makes propane gas lifted, and the gas aggregation at the bottom of the slope decreases. In particular, at a wind speed of 3.3 m/s, the aggregation of propane at the bottom of the first 15° and 20° slopes is more pronounced. Under the upwind condition, the propane gas is entrained at the slope surface, increasing the propane concentration in the area around the tank, which in turn increases the safety risk. The findings of this study have significant implications for the rational layout of chemical enterprises, gas leakage monitoring, and emergency evacuation planning for leakage accidents. They can also help enhance chemical enterprises' safety prevention abilities and the efficiency of their emergency response.","PeriodicalId":20680,"journal":{"name":"Process Safety Progress","volume":"262 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation study on propane gas leakage and diffusion law in slope terrain\",\"authors\":\"Tingting Luan, Xiaoyun Li, Lixun Wang, Yun Chu, Qinghang Zhang, Xinyu Zhang\",\"doi\":\"10.1002/prs.12646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is frequent that gas leakage accidents occur at chemical enterprises located in slope terrain. Meet the requirement of urgently studying the gas leakage and diffusion law in slope terrain. In this study, we utilize computational fluid dynamics (CFD) to simulate the scenarios of propane leakage and diffusion under four distinct slope conditions, which are 0°, 10°, 15°, and 20°. The gas diffusion law under different slopes is investigated, and the influence of wind speed and wind direction on the diffusion process is also further analyzed. The study indicates that when the slope exceeds 15°, the change in slope exerts a pronounced influence on the dispersion of propane leakage. Compared with diffusion on flat ground, there is a distinct propane aggregation area at the bottom of the slope terrain. Also, the steeper the slope, the more noticeable the aggregation phenomenon. The increase of wind speed makes propane gas lifted, and the gas aggregation at the bottom of the slope decreases. In particular, at a wind speed of 3.3 m/s, the aggregation of propane at the bottom of the first 15° and 20° slopes is more pronounced. Under the upwind condition, the propane gas is entrained at the slope surface, increasing the propane concentration in the area around the tank, which in turn increases the safety risk. The findings of this study have significant implications for the rational layout of chemical enterprises, gas leakage monitoring, and emergency evacuation planning for leakage accidents. They can also help enhance chemical enterprises' safety prevention abilities and the efficiency of their emergency response.\",\"PeriodicalId\":20680,\"journal\":{\"name\":\"Process Safety Progress\",\"volume\":\"262 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Process Safety Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/prs.12646\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/prs.12646","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Numerical simulation study on propane gas leakage and diffusion law in slope terrain
It is frequent that gas leakage accidents occur at chemical enterprises located in slope terrain. Meet the requirement of urgently studying the gas leakage and diffusion law in slope terrain. In this study, we utilize computational fluid dynamics (CFD) to simulate the scenarios of propane leakage and diffusion under four distinct slope conditions, which are 0°, 10°, 15°, and 20°. The gas diffusion law under different slopes is investigated, and the influence of wind speed and wind direction on the diffusion process is also further analyzed. The study indicates that when the slope exceeds 15°, the change in slope exerts a pronounced influence on the dispersion of propane leakage. Compared with diffusion on flat ground, there is a distinct propane aggregation area at the bottom of the slope terrain. Also, the steeper the slope, the more noticeable the aggregation phenomenon. The increase of wind speed makes propane gas lifted, and the gas aggregation at the bottom of the slope decreases. In particular, at a wind speed of 3.3 m/s, the aggregation of propane at the bottom of the first 15° and 20° slopes is more pronounced. Under the upwind condition, the propane gas is entrained at the slope surface, increasing the propane concentration in the area around the tank, which in turn increases the safety risk. The findings of this study have significant implications for the rational layout of chemical enterprises, gas leakage monitoring, and emergency evacuation planning for leakage accidents. They can also help enhance chemical enterprises' safety prevention abilities and the efficiency of their emergency response.
期刊介绍:
Process Safety Progress covers process safety for engineering professionals. It addresses such topics as incident investigations/case histories, hazardous chemicals management, hazardous leaks prevention, risk assessment, process hazards evaluation, industrial hygiene, fire and explosion analysis, preventive maintenance, vapor cloud dispersion, and regulatory compliance, training, education, and other areas in process safety and loss prevention, including emerging concerns like plant and/or process security. Papers from the annual Loss Prevention Symposium and other AIChE safety conferences are automatically considered for publication, but unsolicited papers, particularly those addressing process safety issues in emerging technologies and industries are encouraged and evaluated equally.