结束语:致密离子液体:因为有时多多益善

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Rob Atkin
{"title":"结束语:致密离子液体:因为有时多多益善","authors":"Rob Atkin","doi":"10.1039/d4fd00150h","DOIUrl":null,"url":null,"abstract":"It is a formidable challenge, and a distinct privilege, to provide the concluding remarks for this Faraday Discussion on Dense Ionic Fluids (DIFs). What follows is an inherently subjective distillation of the insights that have shaped our understanding of these complex systems over the last few days, with the goal of capture the essence of the Discussion and providing suggestions for future investigations in this rapidly evolving field. DIFs are a fascinating class of electrolyte systems characterized by high ion concentrations in correlated domains. The multiscale nature of DIFs, and the challenges in connecting nanoscale phenomena to bulk properties are discussed in the context of contemporary experimental and computational methods. Next, emerging trends are explored, and then the paper concludes by identifying promising future research directions.","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concluding remarks: Dense Ionic Fluids: Because Sometimes, More is More\",\"authors\":\"Rob Atkin\",\"doi\":\"10.1039/d4fd00150h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is a formidable challenge, and a distinct privilege, to provide the concluding remarks for this Faraday Discussion on Dense Ionic Fluids (DIFs). What follows is an inherently subjective distillation of the insights that have shaped our understanding of these complex systems over the last few days, with the goal of capture the essence of the Discussion and providing suggestions for future investigations in this rapidly evolving field. DIFs are a fascinating class of electrolyte systems characterized by high ion concentrations in correlated domains. The multiscale nature of DIFs, and the challenges in connecting nanoscale phenomena to bulk properties are discussed in the context of contemporary experimental and computational methods. Next, emerging trends are explored, and then the paper concludes by identifying promising future research directions.\",\"PeriodicalId\":76,\"journal\":{\"name\":\"Faraday Discussions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Faraday Discussions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4fd00150h\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4fd00150h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

为本次法拉第高密度离子液体 (DIF) 讨论会作总结发言是一项艰巨的挑战,也是我们的荣幸。以下内容是对过去几天中影响我们对这些复杂系统理解的见解的主观提炼,目的是抓住讨论的精髓,并为这一快速发展领域的未来研究提供建议。DIF 是一类迷人的电解质系统,其特点是相关域中的离子浓度很高。在当代实验和计算方法的背景下,讨论了 DIF 的多尺度性质,以及将纳米级现象与块体特性联系起来所面临的挑战。接下来,论文探讨了新出现的趋势,最后指出了前景光明的未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Concluding remarks: Dense Ionic Fluids: Because Sometimes, More is More
It is a formidable challenge, and a distinct privilege, to provide the concluding remarks for this Faraday Discussion on Dense Ionic Fluids (DIFs). What follows is an inherently subjective distillation of the insights that have shaped our understanding of these complex systems over the last few days, with the goal of capture the essence of the Discussion and providing suggestions for future investigations in this rapidly evolving field. DIFs are a fascinating class of electrolyte systems characterized by high ion concentrations in correlated domains. The multiscale nature of DIFs, and the challenges in connecting nanoscale phenomena to bulk properties are discussed in the context of contemporary experimental and computational methods. Next, emerging trends are explored, and then the paper concludes by identifying promising future research directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Faraday Discussions
Faraday Discussions 化学-物理化学
自引率
0.00%
发文量
259
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信