带奇异项的各向异性退化抛物问题中的有界解

Wahiba Zaater, Hichem Khelifi
{"title":"带奇异项的各向异性退化抛物问题中的有界解","authors":"Wahiba Zaater, Hichem Khelifi","doi":"10.1007/s13226-024-00691-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the existence of bounded solutions for a nonlinear anisotropic parabolic equation with degenerate coercivity and a singular term on the right-hand side. The model problem considered is as follows </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} \\frac{\\partial u}{\\partial t}-\\sum _{i=1}^{N}D_{i} \\left( \\frac{u^{p_{i}-1}(1+D u)^{-1}D u+\\vert D u\\vert ^{p_{i}-2}D u}{(1+\\vert u\\vert )^{\\theta }}\\right) =\\frac{f}{u^{\\gamma }} &amp; \\hbox {in}\\;\\;Q, \\\\ u(x,0)=0 &amp; \\hbox {on}\\;\\; \\Omega ,\\\\ u =0 &amp; \\hbox {on}\\;\\; \\Gamma , \\end{array} \\right. \\end{aligned}$$</span><p>where <span>\\(\\Omega \\)</span> is a bounded open subset of <span>\\(\\mathbb {R}^{N}\\)</span> <span>\\(N\\ge 2\\)</span>, <span>\\(T&gt;0\\)</span>, <span>\\(2\\le p_{i}&lt;N\\)</span> for every <span>\\(i=1,\\ldots ,N\\)</span>, <span>\\(\\theta ,\\gamma \\ge 0\\)</span>, <span>\\(0\\le f\\in L^{m}(Q)\\)</span> with <span>\\(m&gt;\\frac{N}{\\overline{p}}+1\\)</span> (<span>\\(\\overline{p}\\)</span> defined in (2.1)) and <span>\\(Q=\\Omega \\times (0,T)\\)</span>. The main idea in the proof is based on Stampacchia’s lemma, which allows us to obtain a priori estimates by making a suitable choice of a test function.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounded solutions in anisotropic degenerate parabolic problems with a singular term\",\"authors\":\"Wahiba Zaater, Hichem Khelifi\",\"doi\":\"10.1007/s13226-024-00691-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study the existence of bounded solutions for a nonlinear anisotropic parabolic equation with degenerate coercivity and a singular term on the right-hand side. The model problem considered is as follows </p><span>$$\\\\begin{aligned} \\\\left\\\\{ \\\\begin{array}{ll} \\\\frac{\\\\partial u}{\\\\partial t}-\\\\sum _{i=1}^{N}D_{i} \\\\left( \\\\frac{u^{p_{i}-1}(1+D u)^{-1}D u+\\\\vert D u\\\\vert ^{p_{i}-2}D u}{(1+\\\\vert u\\\\vert )^{\\\\theta }}\\\\right) =\\\\frac{f}{u^{\\\\gamma }} &amp; \\\\hbox {in}\\\\;\\\\;Q, \\\\\\\\ u(x,0)=0 &amp; \\\\hbox {on}\\\\;\\\\; \\\\Omega ,\\\\\\\\ u =0 &amp; \\\\hbox {on}\\\\;\\\\; \\\\Gamma , \\\\end{array} \\\\right. \\\\end{aligned}$$</span><p>where <span>\\\\(\\\\Omega \\\\)</span> is a bounded open subset of <span>\\\\(\\\\mathbb {R}^{N}\\\\)</span> <span>\\\\(N\\\\ge 2\\\\)</span>, <span>\\\\(T&gt;0\\\\)</span>, <span>\\\\(2\\\\le p_{i}&lt;N\\\\)</span> for every <span>\\\\(i=1,\\\\ldots ,N\\\\)</span>, <span>\\\\(\\\\theta ,\\\\gamma \\\\ge 0\\\\)</span>, <span>\\\\(0\\\\le f\\\\in L^{m}(Q)\\\\)</span> with <span>\\\\(m&gt;\\\\frac{N}{\\\\overline{p}}+1\\\\)</span> (<span>\\\\(\\\\overline{p}\\\\)</span> defined in (2.1)) and <span>\\\\(Q=\\\\Omega \\\\times (0,T)\\\\)</span>. The main idea in the proof is based on Stampacchia’s lemma, which allows us to obtain a priori estimates by making a suitable choice of a test function.</p>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00691-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00691-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有退化矫顽力和右侧奇异项的非线性各向异性抛物方程有界解的存在性。所考虑的模型问题如下 $$\begin{aligned} (开始{aligned})。\left (左) (begin (array) (ll)\frac{partial u}{partial t}-\sum _{i=1}^{N}D_{i}\left( \frac{u^{p_{i}-1}(1+D u)^{-1}D u+\vert D u\vert ^{p_{i}-2}D u}{(1+\vert u\vert )^{\theta }}\right) =\frac{f}{u^{gamma }} &;\u(x,0)=0 & \hbox {on}\;\;\Omega ,\ u =0 & \hbox {on}\;\;\Gamma , \end{array}.\(right.\end{aligned}$where \(\Omega \) is a bounded open subset of \(\mathbb {R}^{N}\) \(N\ge 2\),\(T>0\),\(2\le p_{i}<;N) for every \(i=1,\ldots ,N\),\(\theta ,\gamma \ge 0\),\(0\le f\in L^{m}(Q)\) with \(m>\frac{N}\{overline{p}}+1\) (\(\overline{p}\) defined in (2.1)) 和 (Q=\Omega \times (0,T)\).证明的主要思想是基于斯坦帕奇亚(Stampacchia)的 Lemma,它允许我们通过适当选择检验函数来获得先验估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounded solutions in anisotropic degenerate parabolic problems with a singular term

In this paper, we study the existence of bounded solutions for a nonlinear anisotropic parabolic equation with degenerate coercivity and a singular term on the right-hand side. The model problem considered is as follows

$$\begin{aligned} \left\{ \begin{array}{ll} \frac{\partial u}{\partial t}-\sum _{i=1}^{N}D_{i} \left( \frac{u^{p_{i}-1}(1+D u)^{-1}D u+\vert D u\vert ^{p_{i}-2}D u}{(1+\vert u\vert )^{\theta }}\right) =\frac{f}{u^{\gamma }} & \hbox {in}\;\;Q, \\ u(x,0)=0 & \hbox {on}\;\; \Omega ,\\ u =0 & \hbox {on}\;\; \Gamma , \end{array} \right. \end{aligned}$$

where \(\Omega \) is a bounded open subset of \(\mathbb {R}^{N}\) \(N\ge 2\), \(T>0\), \(2\le p_{i}<N\) for every \(i=1,\ldots ,N\), \(\theta ,\gamma \ge 0\), \(0\le f\in L^{m}(Q)\) with \(m>\frac{N}{\overline{p}}+1\) (\(\overline{p}\) defined in (2.1)) and \(Q=\Omega \times (0,T)\). The main idea in the proof is based on Stampacchia’s lemma, which allows us to obtain a priori estimates by making a suitable choice of a test function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信