帕塔萨拉蒂、移位紧密性和无限组合论

Nicholas H. Bingham, Adam J. Ostaszewski
{"title":"帕塔萨拉蒂、移位紧密性和无限组合论","authors":"Nicholas H. Bingham, Adam J. Ostaszewski","doi":"10.1007/s13226-024-00638-9","DOIUrl":null,"url":null,"abstract":"<p>Parthasarathy’s heritage has a hidden component arising from a variant of his concept of shift-compactness which yields quick proofs of fundamental theorems reviewed here. We demonstrate the closeness of the variant notion to his original one as arising in the <i>tacit</i> treatment of all possible convergent centrings. We also include a very short proof of the Effros Mapping Theorem – a non-linear version of the Open Mapping Theorem. This is deduced from a shift-compactness theorem. Both these can be given a constructive form by implementing a constructive improvement to a theorem on the separation of points and closed nowhere dense sets.\n</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parthasarathy, shift-compactness and infinite combinatorics\",\"authors\":\"Nicholas H. Bingham, Adam J. Ostaszewski\",\"doi\":\"10.1007/s13226-024-00638-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Parthasarathy’s heritage has a hidden component arising from a variant of his concept of shift-compactness which yields quick proofs of fundamental theorems reviewed here. We demonstrate the closeness of the variant notion to his original one as arising in the <i>tacit</i> treatment of all possible convergent centrings. We also include a very short proof of the Effros Mapping Theorem – a non-linear version of the Open Mapping Theorem. This is deduced from a shift-compactness theorem. Both these can be given a constructive form by implementing a constructive improvement to a theorem on the separation of points and closed nowhere dense sets.\\n</p>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00638-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00638-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

帕塔萨拉希的遗产中有一个隐含的部分,产生于他的移码紧密性概念的一个变体,这个变体可以快速证明本文评述的基本定理。我们证明了这一变体概念与他的原始概念非常接近,因为它产生于对所有可能的收敛中心点的默契处理。我们还包括对埃夫罗斯映射定理--开放映射定理的非线性版本--的简短证明。这个定理是由移位紧凑性定理推导出来的。通过对点分离定理和无处闭合密集集定理的构造性改进,这两个定理都可以被赋予构造形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parthasarathy, shift-compactness and infinite combinatorics

Parthasarathy’s heritage has a hidden component arising from a variant of his concept of shift-compactness which yields quick proofs of fundamental theorems reviewed here. We demonstrate the closeness of the variant notion to his original one as arising in the tacit treatment of all possible convergent centrings. We also include a very short proof of the Effros Mapping Theorem – a non-linear version of the Open Mapping Theorem. This is deduced from a shift-compactness theorem. Both these can be given a constructive form by implementing a constructive improvement to a theorem on the separation of points and closed nowhere dense sets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信