$$2 \times n$$ 行苏斯林矩阵的基本性质

Vijay R. Tiwari, Selby Jose
{"title":"$$2 \\times n$$ 行苏斯林矩阵的基本性质","authors":"Vijay R. Tiwari, Selby Jose","doi":"10.1007/s13226-024-00685-2","DOIUrl":null,"url":null,"abstract":"<p>The study of unimodular rows over a commutative ring involves the utilization of Suslin matrices. These matrices possess a Fundamental Property, which plays a crucial role in establishing connections between the group generated by special Suslin matrices and the special orthogonal group. Moreover, the Fundamental Property serves as a means to establish a link between Suslin matrices and Spin groups. In this work, we focus on <span>\\(2 \\times n\\)</span> row Suslin matrices, defining them and exploring their properties. We provide a proof for the Fundamental Property specific to <span>\\(2 \\times n\\)</span> row Suslin matrices.\n</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fundamental property of $$2 \\\\times n$$ row Suslin matrices\",\"authors\":\"Vijay R. Tiwari, Selby Jose\",\"doi\":\"10.1007/s13226-024-00685-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study of unimodular rows over a commutative ring involves the utilization of Suslin matrices. These matrices possess a Fundamental Property, which plays a crucial role in establishing connections between the group generated by special Suslin matrices and the special orthogonal group. Moreover, the Fundamental Property serves as a means to establish a link between Suslin matrices and Spin groups. In this work, we focus on <span>\\\\(2 \\\\times n\\\\)</span> row Suslin matrices, defining them and exploring their properties. We provide a proof for the Fundamental Property specific to <span>\\\\(2 \\\\times n\\\\)</span> row Suslin matrices.\\n</p>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00685-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00685-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究交换环上的单模数行时,需要利用苏斯林矩阵。这些矩阵具有一个基本性质,它在建立特殊苏斯林矩阵产生的群与特殊正交群之间的联系方面起着至关重要的作用。此外,基本性质还是在苏斯林矩阵和自旋群之间建立联系的一种手段。在这项工作中,我们聚焦于 \(2 \times n\) 行苏斯林矩阵,定义它们并探索它们的性质。我们为 \(2 \times n\) 行 Suslin 矩阵特有的基本性质提供了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fundamental property of $$2 \times n$$ row Suslin matrices

The study of unimodular rows over a commutative ring involves the utilization of Suslin matrices. These matrices possess a Fundamental Property, which plays a crucial role in establishing connections between the group generated by special Suslin matrices and the special orthogonal group. Moreover, the Fundamental Property serves as a means to establish a link between Suslin matrices and Spin groups. In this work, we focus on \(2 \times n\) row Suslin matrices, defining them and exploring their properties. We provide a proof for the Fundamental Property specific to \(2 \times n\) row Suslin matrices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信