Narjes Mohammadi Bandari, Mohammad Abootaleb, Iraj Nikokar, Mohammad Karimli
{"title":"生产含有植酸酶的生物工程益生菌补充剂,供牲畜、家禽和水产养殖食用","authors":"Narjes Mohammadi Bandari, Mohammad Abootaleb, Iraj Nikokar, Mohammad Karimli","doi":"10.1186/s41936-024-00361-1","DOIUrl":null,"url":null,"abstract":"Livestock and aquaculture feed rely heavily on cereals, fish meal, and plant proteins, but these ingredients are not fully utilized by animals, and alternative protein sources are needed due to rising demand, unstable resources, and high prices. However, plant-based materials contain phytic acid or phytate, making phosphorus less available to monogastric animals. Bacterial phytases can effectively release phosphorus from phytate in the digestive system, making them cost-effective and a potential alternative to traditional sources of phosphorus. Probiotics are helpful bacteria that have long been employed in food production and health-related products. Bioengineered probiotics are utilized to express and transmit native or recombinant molecules to the digestive tract's mucosal surface, thereby improving feed efficiency and health. Therefore, this study aimed to use a biologically engineered probiotic supplement containing phytase enzyme-producing lactic acid bacteria as a feed additive for livestock, poultry, and fish to address this issue. The study involved multiple steps to engineer Lactobacillus lactis to produce the PHY protein for animal feed. These steps include identifying and designing primers for the phy gene, and phy gene was extracted from the pMNA1 plasmid by colony PCR and cloned in L. lactis, confirming the presence of the PHY protein through SDS-PAGE, and harvesting the product in granular form. The phy gene identified and isolated using PCR and inserted it into L. lactis, confirming the presence of the PHY protein through SDS-PAGE. The resulting product was harvested and used as animal feed for livestock, poultry, and fish. The development of biologically engineered probiotic supplements containing phytase enzyme can enhance the nutritional value and sustainability of animal production. More research and development in this field can lead to more effective and sustainable animal production practices, benefiting both producers and consumers of animal products.","PeriodicalId":22591,"journal":{"name":"The Journal of Basic and Applied Zoology","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biologically engineered probiotic supplement production containing phytase enzyme for livestock, poultry, and aquaculture consumption\",\"authors\":\"Narjes Mohammadi Bandari, Mohammad Abootaleb, Iraj Nikokar, Mohammad Karimli\",\"doi\":\"10.1186/s41936-024-00361-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Livestock and aquaculture feed rely heavily on cereals, fish meal, and plant proteins, but these ingredients are not fully utilized by animals, and alternative protein sources are needed due to rising demand, unstable resources, and high prices. However, plant-based materials contain phytic acid or phytate, making phosphorus less available to monogastric animals. Bacterial phytases can effectively release phosphorus from phytate in the digestive system, making them cost-effective and a potential alternative to traditional sources of phosphorus. Probiotics are helpful bacteria that have long been employed in food production and health-related products. Bioengineered probiotics are utilized to express and transmit native or recombinant molecules to the digestive tract's mucosal surface, thereby improving feed efficiency and health. Therefore, this study aimed to use a biologically engineered probiotic supplement containing phytase enzyme-producing lactic acid bacteria as a feed additive for livestock, poultry, and fish to address this issue. The study involved multiple steps to engineer Lactobacillus lactis to produce the PHY protein for animal feed. These steps include identifying and designing primers for the phy gene, and phy gene was extracted from the pMNA1 plasmid by colony PCR and cloned in L. lactis, confirming the presence of the PHY protein through SDS-PAGE, and harvesting the product in granular form. The phy gene identified and isolated using PCR and inserted it into L. lactis, confirming the presence of the PHY protein through SDS-PAGE. The resulting product was harvested and used as animal feed for livestock, poultry, and fish. The development of biologically engineered probiotic supplements containing phytase enzyme can enhance the nutritional value and sustainability of animal production. More research and development in this field can lead to more effective and sustainable animal production practices, benefiting both producers and consumers of animal products.\",\"PeriodicalId\":22591,\"journal\":{\"name\":\"The Journal of Basic and Applied Zoology\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Basic and Applied Zoology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41936-024-00361-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Basic and Applied Zoology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41936-024-00361-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biologically engineered probiotic supplement production containing phytase enzyme for livestock, poultry, and aquaculture consumption
Livestock and aquaculture feed rely heavily on cereals, fish meal, and plant proteins, but these ingredients are not fully utilized by animals, and alternative protein sources are needed due to rising demand, unstable resources, and high prices. However, plant-based materials contain phytic acid or phytate, making phosphorus less available to monogastric animals. Bacterial phytases can effectively release phosphorus from phytate in the digestive system, making them cost-effective and a potential alternative to traditional sources of phosphorus. Probiotics are helpful bacteria that have long been employed in food production and health-related products. Bioengineered probiotics are utilized to express and transmit native or recombinant molecules to the digestive tract's mucosal surface, thereby improving feed efficiency and health. Therefore, this study aimed to use a biologically engineered probiotic supplement containing phytase enzyme-producing lactic acid bacteria as a feed additive for livestock, poultry, and fish to address this issue. The study involved multiple steps to engineer Lactobacillus lactis to produce the PHY protein for animal feed. These steps include identifying and designing primers for the phy gene, and phy gene was extracted from the pMNA1 plasmid by colony PCR and cloned in L. lactis, confirming the presence of the PHY protein through SDS-PAGE, and harvesting the product in granular form. The phy gene identified and isolated using PCR and inserted it into L. lactis, confirming the presence of the PHY protein through SDS-PAGE. The resulting product was harvested and used as animal feed for livestock, poultry, and fish. The development of biologically engineered probiotic supplements containing phytase enzyme can enhance the nutritional value and sustainability of animal production. More research and development in this field can lead to more effective and sustainable animal production practices, benefiting both producers and consumers of animal products.