{"title":"甲醇脱氢酶中配体结合的分子动力学计算见解","authors":"One-Sun Lee, Sung Haeng Lee","doi":"10.1093/chemle/upae153","DOIUrl":null,"url":null,"abstract":"Methanol dehydrogenase is a promising biocatalyst for industrial use, converting methanol to formaldehyde. Our molecular modeling revealed methanol binds to methanol dehydrogenase with ∼7 kcal/mol free energy, while formaldehyde binds with ∼4 kcal/mol. This suggests that methanol remains longer in the active site, and formaldehyde exits more readily postreaction. These insights are crucial for designing more efficient methanol dehydrogenase variants for industrial applications.","PeriodicalId":9862,"journal":{"name":"Chemistry Letters","volume":"2 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational insights into the molecular dynamics of the binding of ligands in the methanol dehydrogenase\",\"authors\":\"One-Sun Lee, Sung Haeng Lee\",\"doi\":\"10.1093/chemle/upae153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methanol dehydrogenase is a promising biocatalyst for industrial use, converting methanol to formaldehyde. Our molecular modeling revealed methanol binds to methanol dehydrogenase with ∼7 kcal/mol free energy, while formaldehyde binds with ∼4 kcal/mol. This suggests that methanol remains longer in the active site, and formaldehyde exits more readily postreaction. These insights are crucial for designing more efficient methanol dehydrogenase variants for industrial applications.\",\"PeriodicalId\":9862,\"journal\":{\"name\":\"Chemistry Letters\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1093/chemle/upae153\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/chemle/upae153","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Computational insights into the molecular dynamics of the binding of ligands in the methanol dehydrogenase
Methanol dehydrogenase is a promising biocatalyst for industrial use, converting methanol to formaldehyde. Our molecular modeling revealed methanol binds to methanol dehydrogenase with ∼7 kcal/mol free energy, while formaldehyde binds with ∼4 kcal/mol. This suggests that methanol remains longer in the active site, and formaldehyde exits more readily postreaction. These insights are crucial for designing more efficient methanol dehydrogenase variants for industrial applications.