石墨烯纳米颗粒对 SS304 钢上高速富氧燃料 (HVOF) 喷射的 Mo2C 和 Co-Ni-Based 涂层浆料侵蚀行为的影响

Nitin Kumar, Jaspal Singh Gill
{"title":"石墨烯纳米颗粒对 SS304 钢上高速富氧燃料 (HVOF) 喷射的 Mo2C 和 Co-Ni-Based 涂层浆料侵蚀行为的影响","authors":"Nitin Kumar, Jaspal Singh Gill","doi":"10.1007/s11663-024-03249-1","DOIUrl":null,"url":null,"abstract":"<p>The present study delves into the challenges of slurry erosion in hydropower plant components, particularly focusing on Stainless-Steel 304 (SS304) limitations under high-velocity conditions. It proposes Mo<sub>2</sub>C coating combinations applied <i>via</i> High-Velocity Oxy-Fuel (HVOF) spraying as a promising solution due to their high hardness, wear, and corrosion resistance. Three coatings (Coating A, Coating B, and Coating C) were formulated with varying Mo<sub>2</sub>C, Co–Ni, and graphene nanoparticles (GNP) percentages, demonstrating unique erosion-resistant properties. Microscopic analysis revealed wear mechanisms, with Coating A displaying particle breakage, Coating B exhibiting fractured Mo<sub>2</sub>C particles, and Coating C showing dynamic interactions with GNP, enhancing resistance. The findings suggest that tailored coatings incorporating GNP offer potential for erosion resistance improvement, prompting further exploration into optimizing GNP concentrations, refining deposition techniques, and assessing long-term durability under diverse operational conditions.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Graphene Nanoparticles on Slurry Erosion Behavior of High-Velocity Oxy-Fuel (HVOF)-Sprayed Mo2C and Co–Ni-Based Coatings Over SS304 Steel\",\"authors\":\"Nitin Kumar, Jaspal Singh Gill\",\"doi\":\"10.1007/s11663-024-03249-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present study delves into the challenges of slurry erosion in hydropower plant components, particularly focusing on Stainless-Steel 304 (SS304) limitations under high-velocity conditions. It proposes Mo<sub>2</sub>C coating combinations applied <i>via</i> High-Velocity Oxy-Fuel (HVOF) spraying as a promising solution due to their high hardness, wear, and corrosion resistance. Three coatings (Coating A, Coating B, and Coating C) were formulated with varying Mo<sub>2</sub>C, Co–Ni, and graphene nanoparticles (GNP) percentages, demonstrating unique erosion-resistant properties. Microscopic analysis revealed wear mechanisms, with Coating A displaying particle breakage, Coating B exhibiting fractured Mo<sub>2</sub>C particles, and Coating C showing dynamic interactions with GNP, enhancing resistance. The findings suggest that tailored coatings incorporating GNP offer potential for erosion resistance improvement, prompting further exploration into optimizing GNP concentrations, refining deposition techniques, and assessing long-term durability under diverse operational conditions.</p>\",\"PeriodicalId\":18613,\"journal\":{\"name\":\"Metallurgical and Materials Transactions B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Transactions B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11663-024-03249-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11663-024-03249-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究深入探讨了水力发电厂部件所面临的浆液侵蚀挑战,尤其关注高速条件下不锈钢 304(SS304)的局限性。由于 Mo2C 涂层具有高硬度、耐磨性和耐腐蚀性,该研究提出了通过高速富氧燃料(HVOF)喷涂的 Mo2C 涂层组合作为一种有前途的解决方案。我们配制了三种涂层(涂层 A、涂层 B 和涂层 C),其中 Mo2C、Co-Ni 和石墨烯纳米颗粒(GNP)的比例各不相同,显示出独特的抗侵蚀特性。显微分析揭示了磨损机制,涂层 A 显示出颗粒断裂,涂层 B 显示出断裂的 Mo2C 颗粒,而涂层 C 则显示出与 GNP 的动态相互作用,从而增强了耐磨性。研究结果表明,含有 GNP 的定制涂层具有提高抗侵蚀性的潜力,这促使人们进一步探索如何优化 GNP 浓度、改进沉积技术以及评估在不同操作条件下的长期耐久性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of Graphene Nanoparticles on Slurry Erosion Behavior of High-Velocity Oxy-Fuel (HVOF)-Sprayed Mo2C and Co–Ni-Based Coatings Over SS304 Steel

Effect of Graphene Nanoparticles on Slurry Erosion Behavior of High-Velocity Oxy-Fuel (HVOF)-Sprayed Mo2C and Co–Ni-Based Coatings Over SS304 Steel

The present study delves into the challenges of slurry erosion in hydropower plant components, particularly focusing on Stainless-Steel 304 (SS304) limitations under high-velocity conditions. It proposes Mo2C coating combinations applied via High-Velocity Oxy-Fuel (HVOF) spraying as a promising solution due to their high hardness, wear, and corrosion resistance. Three coatings (Coating A, Coating B, and Coating C) were formulated with varying Mo2C, Co–Ni, and graphene nanoparticles (GNP) percentages, demonstrating unique erosion-resistant properties. Microscopic analysis revealed wear mechanisms, with Coating A displaying particle breakage, Coating B exhibiting fractured Mo2C particles, and Coating C showing dynamic interactions with GNP, enhancing resistance. The findings suggest that tailored coatings incorporating GNP offer potential for erosion resistance improvement, prompting further exploration into optimizing GNP concentrations, refining deposition techniques, and assessing long-term durability under diverse operational conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信