{"title":"吲哚-噻唑烷二酮-三唑混合物:合成、分子对接、吸收、分布、代谢和排泄(ADME)分析,以及作为α-淀粉酶抑制剂的生物学评价","authors":"Monil P Dholariya, Anilkumar S Patel","doi":"10.1093/chemle/upae162","DOIUrl":null,"url":null,"abstract":"A novel series of hybrid indole–thiazolidinedione–triazole derivatives (6a-l) were synthesized and assessed for their in vitro inhibitory activity against porcine pancreatic α-amylase. The synthetic procedure consists of 3 steps. A crucial step in this process involves the generation of novel target molecules using a Cu(I)-catalyzed azide–alkyne cycloaddition reaction. The α-amylase inhibition IC50 value of the targeted compounds ranged from 0.51 ± 0.02 to 7.99 ± 0.28 μM as compared with 0.68 ± 0.02 μM with acarbose as the standard drug. Using the Autodock technique, all the derivatives 6a-l were subjected to molecular docking investigations against porcine pancreatic α-amylase (PDB ID: 1OSE). Moreover, it was discovered that the docked compounds had excellent binding affinities that ranged from −10.1 to −10.8 kcal/mol as compared with the standard −7.9 kcal/mol. Additionally, a comprehensive analysis of the physicochemical and pharmacokinetic properties associated with absorption, distribution, metabolism and excretion (ADME) was conducted for all the synthesized compounds.","PeriodicalId":9862,"journal":{"name":"Chemistry Letters","volume":"408 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indole–thiazolidinedione–triazole hybrids: synthesis, molecular docking, absorption, distribution, metabolism and excretion (ADME) profiling, and biological evaluation as α-amylase inhibitors\",\"authors\":\"Monil P Dholariya, Anilkumar S Patel\",\"doi\":\"10.1093/chemle/upae162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel series of hybrid indole–thiazolidinedione–triazole derivatives (6a-l) were synthesized and assessed for their in vitro inhibitory activity against porcine pancreatic α-amylase. The synthetic procedure consists of 3 steps. A crucial step in this process involves the generation of novel target molecules using a Cu(I)-catalyzed azide–alkyne cycloaddition reaction. The α-amylase inhibition IC50 value of the targeted compounds ranged from 0.51 ± 0.02 to 7.99 ± 0.28 μM as compared with 0.68 ± 0.02 μM with acarbose as the standard drug. Using the Autodock technique, all the derivatives 6a-l were subjected to molecular docking investigations against porcine pancreatic α-amylase (PDB ID: 1OSE). Moreover, it was discovered that the docked compounds had excellent binding affinities that ranged from −10.1 to −10.8 kcal/mol as compared with the standard −7.9 kcal/mol. Additionally, a comprehensive analysis of the physicochemical and pharmacokinetic properties associated with absorption, distribution, metabolism and excretion (ADME) was conducted for all the synthesized compounds.\",\"PeriodicalId\":9862,\"journal\":{\"name\":\"Chemistry Letters\",\"volume\":\"408 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1093/chemle/upae162\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/chemle/upae162","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Indole–thiazolidinedione–triazole hybrids: synthesis, molecular docking, absorption, distribution, metabolism and excretion (ADME) profiling, and biological evaluation as α-amylase inhibitors
A novel series of hybrid indole–thiazolidinedione–triazole derivatives (6a-l) were synthesized and assessed for their in vitro inhibitory activity against porcine pancreatic α-amylase. The synthetic procedure consists of 3 steps. A crucial step in this process involves the generation of novel target molecules using a Cu(I)-catalyzed azide–alkyne cycloaddition reaction. The α-amylase inhibition IC50 value of the targeted compounds ranged from 0.51 ± 0.02 to 7.99 ± 0.28 μM as compared with 0.68 ± 0.02 μM with acarbose as the standard drug. Using the Autodock technique, all the derivatives 6a-l were subjected to molecular docking investigations against porcine pancreatic α-amylase (PDB ID: 1OSE). Moreover, it was discovered that the docked compounds had excellent binding affinities that ranged from −10.1 to −10.8 kcal/mol as compared with the standard −7.9 kcal/mol. Additionally, a comprehensive analysis of the physicochemical and pharmacokinetic properties associated with absorption, distribution, metabolism and excretion (ADME) was conducted for all the synthesized compounds.