通过局部氧化多价金属氧化物(CoO)提高锂离子负极材料的电化学性能

Zhiqiang Liu, Hui Li, Zhiteng Wang, Xiaobing Li, Huixin Lan, Zhenhe Zhu, Yi Zhuang, Yuchen Wu, Jiajia Li, Huan Yao, Runbo Gao
{"title":"通过局部氧化多价金属氧化物(CoO)提高锂离子负极材料的电化学性能","authors":"Zhiqiang Liu, Hui Li, Zhiteng Wang, Xiaobing Li, Huixin Lan, Zhenhe Zhu, Yi Zhuang, Yuchen Wu, Jiajia Li, Huan Yao, Runbo Gao","doi":"10.1007/s11663-024-03271-3","DOIUrl":null,"url":null,"abstract":"<p>Efficient and stable lithium-ion batteries (LIBs) have garnered considerable attention; yet, the development of anode electrode materials continues to pose substantial challenges. While CoO electrode material boasts an ideal specific theoretical capacity, it is not without drawbacks, including significant volume expansion and concerns over safety performance, which hinder its viability as an anode material. In this research, we synthesized CoO/Co<sub>3</sub>O<sub>4</sub> through a straightforward secondary hydrothermal treatment that locally oxidizes CoO, simultaneously creating oxygen vacancies. The incorporation of oxygen vacancies enhances the material’s internal conductivity and expedites the diffusion of electrons and ions, culminating in superior rate performance. Furthermore, the heterojunction structure diminishes the diffusion barrier, significantly enhancing the electrode’s reaction kinetics and overall electrochemical performance. At a modest current density of 0.1 A g<sup>−1</sup>, the CoO/Co<sub>3</sub>O<sub>4</sub> composite demonstrates enhanced cycling stability, delivering a capacity of 1022 mAh g<sup>−1</sup> after 100 cycles. Remarkably, even at an elevated current density of 1 A g<sup>−1</sup>, it sustains a capacity of 768.8 mAh g<sup>−1</sup> over 400 cycles. The method of creating oxygen vacancies <i>via</i> autoxidation may pave the way for the advancement of multivalent oxide anode materials.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of Electrochemical Performance of Lithium-Ion Anode Materials by Local Oxidation of Multivalent Metal Oxides (CoO)\",\"authors\":\"Zhiqiang Liu, Hui Li, Zhiteng Wang, Xiaobing Li, Huixin Lan, Zhenhe Zhu, Yi Zhuang, Yuchen Wu, Jiajia Li, Huan Yao, Runbo Gao\",\"doi\":\"10.1007/s11663-024-03271-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Efficient and stable lithium-ion batteries (LIBs) have garnered considerable attention; yet, the development of anode electrode materials continues to pose substantial challenges. While CoO electrode material boasts an ideal specific theoretical capacity, it is not without drawbacks, including significant volume expansion and concerns over safety performance, which hinder its viability as an anode material. In this research, we synthesized CoO/Co<sub>3</sub>O<sub>4</sub> through a straightforward secondary hydrothermal treatment that locally oxidizes CoO, simultaneously creating oxygen vacancies. The incorporation of oxygen vacancies enhances the material’s internal conductivity and expedites the diffusion of electrons and ions, culminating in superior rate performance. Furthermore, the heterojunction structure diminishes the diffusion barrier, significantly enhancing the electrode’s reaction kinetics and overall electrochemical performance. At a modest current density of 0.1 A g<sup>−1</sup>, the CoO/Co<sub>3</sub>O<sub>4</sub> composite demonstrates enhanced cycling stability, delivering a capacity of 1022 mAh g<sup>−1</sup> after 100 cycles. Remarkably, even at an elevated current density of 1 A g<sup>−1</sup>, it sustains a capacity of 768.8 mAh g<sup>−1</sup> over 400 cycles. The method of creating oxygen vacancies <i>via</i> autoxidation may pave the way for the advancement of multivalent oxide anode materials.</p>\",\"PeriodicalId\":18613,\"journal\":{\"name\":\"Metallurgical and Materials Transactions B\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Transactions B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11663-024-03271-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11663-024-03271-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高效、稳定的锂离子电池(LIB)备受关注,但负极电极材料的开发仍面临巨大挑战。尽管 CoO 电极材料拥有理想的比理论容量,但它也并非没有缺点,包括显著的体积膨胀和对安全性能的担忧,这些都阻碍了它作为负极材料的可行性。在这项研究中,我们通过直接的二次水热处理合成了 CoO/Co3O4,在局部氧化 CoO 的同时产生了氧空位。氧空位的加入增强了材料的内部电导率,加快了电子和离子的扩散,从而实现了卓越的速率性能。此外,异质结结构减小了扩散障碍,显著提高了电极的反应动力学和整体电化学性能。在 0.1 A g-1 的适度电流密度下,CoO/Co3O4 复合材料显示出更强的循环稳定性,100 次循环后可提供 1022 mAh g-1 的容量。值得注意的是,即使在 1 A g-1 的高电流密度下,它也能在 400 次循环后保持 768.8 mAh g-1 的容量。通过自氧化产生氧空位的方法可能会为多价氧化物阳极材料的发展铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improvement of Electrochemical Performance of Lithium-Ion Anode Materials by Local Oxidation of Multivalent Metal Oxides (CoO)

Improvement of Electrochemical Performance of Lithium-Ion Anode Materials by Local Oxidation of Multivalent Metal Oxides (CoO)

Efficient and stable lithium-ion batteries (LIBs) have garnered considerable attention; yet, the development of anode electrode materials continues to pose substantial challenges. While CoO electrode material boasts an ideal specific theoretical capacity, it is not without drawbacks, including significant volume expansion and concerns over safety performance, which hinder its viability as an anode material. In this research, we synthesized CoO/Co3O4 through a straightforward secondary hydrothermal treatment that locally oxidizes CoO, simultaneously creating oxygen vacancies. The incorporation of oxygen vacancies enhances the material’s internal conductivity and expedites the diffusion of electrons and ions, culminating in superior rate performance. Furthermore, the heterojunction structure diminishes the diffusion barrier, significantly enhancing the electrode’s reaction kinetics and overall electrochemical performance. At a modest current density of 0.1 A g−1, the CoO/Co3O4 composite demonstrates enhanced cycling stability, delivering a capacity of 1022 mAh g−1 after 100 cycles. Remarkably, even at an elevated current density of 1 A g−1, it sustains a capacity of 768.8 mAh g−1 over 400 cycles. The method of creating oxygen vacancies via autoxidation may pave the way for the advancement of multivalent oxide anode materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信