利用拜尔类定理探索准巴纳赫空间的狮子问题

A. G. Aksoy, J. M. Almira
{"title":"利用拜尔类定理探索准巴纳赫空间的狮子问题","authors":"A. G. Aksoy, J. M. Almira","doi":"arxiv-2408.14893","DOIUrl":null,"url":null,"abstract":"Many results for Banach spaces also hold for quasi-Banach spaces. One\nimportant such example is results depending on the Baire Category Theorem\n(BCT). We use the BCT to explore Lions problem for a quasi-Banach couple $(A_0,\nA_1)$. Lions problem, posed in 1960's, is to prove that different parameters\n$(\\theta,p)$ produce different interpolation spaces $(A_0, A_1)_{\\theta, p}$.\nWe first establish conditions on $A_0$ and $A_1$ so that interpolation spaces\nof this couple are strictly intermediate spaces between $A_0+A_1$ and $A_0\\cap\nA_1$. This result, together with a reiteration theorem, gives a partial\nsolution to Lions problem for quasi-Banach couples. We then apply our\ninterpolation result to (partially) answer a question posed by Pietsch. More\nprecisely, we show that if $p\\neq p^*$ the operator ideals\n$\\mathcal{L}^{(a)}_{p,q}(X,Y)$, $\\mathcal{L}^{(a)}_{p^*,q^*}(X,Y)$ generated by\napproximation numbers are distinct. Moreover, for any fixed $p$, either all\noperator ideals $\\mathcal{L}^{(a)}_{p,q}(X,Y)$ collapse into a unique space or\nthey are pairwise distinct. We cite counterexamples which show that using\ninterpolation spaces is not appropriate to solve Pietsch's problem for operator\nideals based on general $s$-numbers. However, the BCT can be used to prove a\nlethargy result for arbitrary $s$-numbers which guarantees that, under very\nminimal conditions on $X,Y$, the space $\\mathcal{L}^{(s)}_{p,q}(X,Y)$ is\nstrictly embedded into $\\mathcal{L}^{\\mathcal{A}}(X,Y)$. The paper is dedicated\nto the memory of Prof. A. Pietsch, who passed away recently.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using the Baire Category Theorem to Explore Lions Problem for Quasi-Banach Spaces\",\"authors\":\"A. G. Aksoy, J. M. Almira\",\"doi\":\"arxiv-2408.14893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many results for Banach spaces also hold for quasi-Banach spaces. One\\nimportant such example is results depending on the Baire Category Theorem\\n(BCT). We use the BCT to explore Lions problem for a quasi-Banach couple $(A_0,\\nA_1)$. Lions problem, posed in 1960's, is to prove that different parameters\\n$(\\\\theta,p)$ produce different interpolation spaces $(A_0, A_1)_{\\\\theta, p}$.\\nWe first establish conditions on $A_0$ and $A_1$ so that interpolation spaces\\nof this couple are strictly intermediate spaces between $A_0+A_1$ and $A_0\\\\cap\\nA_1$. This result, together with a reiteration theorem, gives a partial\\nsolution to Lions problem for quasi-Banach couples. We then apply our\\ninterpolation result to (partially) answer a question posed by Pietsch. More\\nprecisely, we show that if $p\\\\neq p^*$ the operator ideals\\n$\\\\mathcal{L}^{(a)}_{p,q}(X,Y)$, $\\\\mathcal{L}^{(a)}_{p^*,q^*}(X,Y)$ generated by\\napproximation numbers are distinct. Moreover, for any fixed $p$, either all\\noperator ideals $\\\\mathcal{L}^{(a)}_{p,q}(X,Y)$ collapse into a unique space or\\nthey are pairwise distinct. We cite counterexamples which show that using\\ninterpolation spaces is not appropriate to solve Pietsch's problem for operator\\nideals based on general $s$-numbers. However, the BCT can be used to prove a\\nlethargy result for arbitrary $s$-numbers which guarantees that, under very\\nminimal conditions on $X,Y$, the space $\\\\mathcal{L}^{(s)}_{p,q}(X,Y)$ is\\nstrictly embedded into $\\\\mathcal{L}^{\\\\mathcal{A}}(X,Y)$. The paper is dedicated\\nto the memory of Prof. A. Pietsch, who passed away recently.\",\"PeriodicalId\":501036,\"journal\":{\"name\":\"arXiv - MATH - Functional Analysis\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

巴拿赫空间的许多结果也适用于准巴拿赫空间。其中一个重要的例子就是取决于拜尔范畴定理(BCT)的结果。我们用 BCT 来探讨准巴拿赫对偶 $(A_0,A_1)$ 的狮子问题。我们首先建立了关于 $A_0$ 和 $A_1$ 的条件,从而使这一对的插值空间严格介于 $A_0+A_1$ 和 $A_0\capA_1$ 之间。这一结果连同重申定理给出了准巴纳赫对偶的狮子问题的部分解决方案。然后,我们应用我们的插值结果(部分地)回答了 Pietsch 提出的问题。更准确地说,我们证明了如果 $p\neq p^*$ 的算子理想$\mathcal{L}^{(a)}_{p,q}(X,Y)$,由近似数生成的 $\mathcal{L}^{(a)}_{p^*,q^*}(X,Y)$ 是不同的。此外,对于任何固定的 $p$,要么全运算符理想 $\mathcal{L}^{(a)}_{p,q}(X,Y)$ 折叠成一个唯一的空间,要么它们成对地是不同的。我们列举了一些反例,说明使用插值空间来解决基于一般$s$数的算子理想的皮亚杰问题并不合适。然而,BCT 可用来证明任意 $s$ 数的无穷结果,它保证在 $X,Y$ 的极小条件下,空间 $\mathcal{L}^{(s)}_{p,q}(X,Y)$ 严格嵌入到 $\mathcal{L}^{\mathcal{A}}(X,Y)$ 中。谨以此文纪念最近去世的 A. Pietsch 教授。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using the Baire Category Theorem to Explore Lions Problem for Quasi-Banach Spaces
Many results for Banach spaces also hold for quasi-Banach spaces. One important such example is results depending on the Baire Category Theorem (BCT). We use the BCT to explore Lions problem for a quasi-Banach couple $(A_0, A_1)$. Lions problem, posed in 1960's, is to prove that different parameters $(\theta,p)$ produce different interpolation spaces $(A_0, A_1)_{\theta, p}$. We first establish conditions on $A_0$ and $A_1$ so that interpolation spaces of this couple are strictly intermediate spaces between $A_0+A_1$ and $A_0\cap A_1$. This result, together with a reiteration theorem, gives a partial solution to Lions problem for quasi-Banach couples. We then apply our interpolation result to (partially) answer a question posed by Pietsch. More precisely, we show that if $p\neq p^*$ the operator ideals $\mathcal{L}^{(a)}_{p,q}(X,Y)$, $\mathcal{L}^{(a)}_{p^*,q^*}(X,Y)$ generated by approximation numbers are distinct. Moreover, for any fixed $p$, either all operator ideals $\mathcal{L}^{(a)}_{p,q}(X,Y)$ collapse into a unique space or they are pairwise distinct. We cite counterexamples which show that using interpolation spaces is not appropriate to solve Pietsch's problem for operator ideals based on general $s$-numbers. However, the BCT can be used to prove a lethargy result for arbitrary $s$-numbers which guarantees that, under very minimal conditions on $X,Y$, the space $\mathcal{L}^{(s)}_{p,q}(X,Y)$ is strictly embedded into $\mathcal{L}^{\mathcal{A}}(X,Y)$. The paper is dedicated to the memory of Prof. A. Pietsch, who passed away recently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信