{"title":"抽象距离空间中的奥斯特洛夫斯基式不等式","authors":"Vladyslav Babenko, Vira Babenko, Oleg Kovalenko","doi":"arxiv-2408.15579","DOIUrl":null,"url":null,"abstract":"For non-empty sets X we define notions of distance and pseudo metric with\nvalues in a partially ordered set that has a smallest element $\\theta $. If\n$h_X$ is a distance in $X$ (respectively, a pseudo metric in $X$), then the\npair $(X,h_X)$ is called a distance (respectively, a pseudo metric) space. If\n$(T,h_T)$ and $(X,h_X)$ are pseudo metric spaces, $(Y,h_Y)$ is a distance\nspace, and $H(T,X)$ is a class of Lipschitz mappings $f\\colon T\\to X$, for a\nbroad family of mappings $\\Lambda\\colon H (T,X)\\to Y$, we obtain a sharp\ninequality that estimates the deviation $h_Y(\\Lambda f(\\cdot),\\Lambda f(t))$ in\nterms of the function $h_T(\\cdot, t)$. We also show that many known estimates\nof such kind are contained in our general result.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ostrowski-type inequalities in abstract distance spaces\",\"authors\":\"Vladyslav Babenko, Vira Babenko, Oleg Kovalenko\",\"doi\":\"arxiv-2408.15579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For non-empty sets X we define notions of distance and pseudo metric with\\nvalues in a partially ordered set that has a smallest element $\\\\theta $. If\\n$h_X$ is a distance in $X$ (respectively, a pseudo metric in $X$), then the\\npair $(X,h_X)$ is called a distance (respectively, a pseudo metric) space. If\\n$(T,h_T)$ and $(X,h_X)$ are pseudo metric spaces, $(Y,h_Y)$ is a distance\\nspace, and $H(T,X)$ is a class of Lipschitz mappings $f\\\\colon T\\\\to X$, for a\\nbroad family of mappings $\\\\Lambda\\\\colon H (T,X)\\\\to Y$, we obtain a sharp\\ninequality that estimates the deviation $h_Y(\\\\Lambda f(\\\\cdot),\\\\Lambda f(t))$ in\\nterms of the function $h_T(\\\\cdot, t)$. We also show that many known estimates\\nof such kind are contained in our general result.\",\"PeriodicalId\":501036,\"journal\":{\"name\":\"arXiv - MATH - Functional Analysis\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ostrowski-type inequalities in abstract distance spaces
For non-empty sets X we define notions of distance and pseudo metric with
values in a partially ordered set that has a smallest element $\theta $. If
$h_X$ is a distance in $X$ (respectively, a pseudo metric in $X$), then the
pair $(X,h_X)$ is called a distance (respectively, a pseudo metric) space. If
$(T,h_T)$ and $(X,h_X)$ are pseudo metric spaces, $(Y,h_Y)$ is a distance
space, and $H(T,X)$ is a class of Lipschitz mappings $f\colon T\to X$, for a
broad family of mappings $\Lambda\colon H (T,X)\to Y$, we obtain a sharp
inequality that estimates the deviation $h_Y(\Lambda f(\cdot),\Lambda f(t))$ in
terms of the function $h_T(\cdot, t)$. We also show that many known estimates
of such kind are contained in our general result.