从 Wronskians 和 dessins d'enfant 看改进的小数上界

Boulos El Hilany, Sébastien Tavenas
{"title":"从 Wronskians 和 dessins d'enfant 看改进的小数上界","authors":"Boulos El Hilany, Sébastien Tavenas","doi":"arxiv-2409.01651","DOIUrl":null,"url":null,"abstract":"We use Grothendieck's dessins d'enfant to show that if $P$ and $Q$ are two\nreal polynomials, any real function of the form $x^\\alpha(1-x)^{\\beta} P - Q$,\nhas at most $\\deg P +\\deg Q + 2$ roots in the interval $]0,~1[$. As a\nconsequence, we obtain an upper bound on the number of positive solutions to a\nreal polynomial system $f=g=0$ in two variables where $f$ has three monomials\nterms, and $g$ has $t$ terms. The approach we adopt for tackling this Fewnomial\nbound relies on the theory of Wronskians, which was used in Koiran et.\\ al.\\\n(J.\\ Symb.\\ Comput., 2015) for producing the first upper bound which is\npolynomial in $t$.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved fewnomial upper bounds from Wronskians and dessins d'enfant\",\"authors\":\"Boulos El Hilany, Sébastien Tavenas\",\"doi\":\"arxiv-2409.01651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use Grothendieck's dessins d'enfant to show that if $P$ and $Q$ are two\\nreal polynomials, any real function of the form $x^\\\\alpha(1-x)^{\\\\beta} P - Q$,\\nhas at most $\\\\deg P +\\\\deg Q + 2$ roots in the interval $]0,~1[$. As a\\nconsequence, we obtain an upper bound on the number of positive solutions to a\\nreal polynomial system $f=g=0$ in two variables where $f$ has three monomials\\nterms, and $g$ has $t$ terms. The approach we adopt for tackling this Fewnomial\\nbound relies on the theory of Wronskians, which was used in Koiran et.\\\\ al.\\\\\\n(J.\\\\ Symb.\\\\ Comput., 2015) for producing the first upper bound which is\\npolynomial in $t$.\",\"PeriodicalId\":501036,\"journal\":{\"name\":\"arXiv - MATH - Functional Analysis\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用格罗登第克的 "童年甜点 "来证明,如果 $P$ 和 $Q$ 是二元多项式,任何形式为 $x^\alpha(1-x)^{\beta} P - Q$ 的实函数在区间 $]0,~1[$ 中最多有 $deg P +\deg Q + 2$ 根。因此,我们得到了两变量多项式系统 $f=g=0$ 的正解数上限,其中 $f$ 有三个单项式,而 $g$ 有 $t$ 项。我们采用的处理这个 Fewnomialbound 的方法依赖于 Wronskians 理论,该理论在 Koiran et.\ al.(J.\ Symb.\ Comput.,2015 年)中被用于产生第一个与 $t$ 成对数的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved fewnomial upper bounds from Wronskians and dessins d'enfant
We use Grothendieck's dessins d'enfant to show that if $P$ and $Q$ are two real polynomials, any real function of the form $x^\alpha(1-x)^{\beta} P - Q$, has at most $\deg P +\deg Q + 2$ roots in the interval $]0,~1[$. As a consequence, we obtain an upper bound on the number of positive solutions to a real polynomial system $f=g=0$ in two variables where $f$ has three monomials terms, and $g$ has $t$ terms. The approach we adopt for tackling this Fewnomial bound relies on the theory of Wronskians, which was used in Koiran et.\ al.\ (J.\ Symb.\ Comput., 2015) for producing the first upper bound which is polynomial in $t$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信