量子布尔立方体的几何影响

David P. Blecher, Li Gao, Bang Xu
{"title":"量子布尔立方体的几何影响","authors":"David P. Blecher, Li Gao, Bang Xu","doi":"arxiv-2409.00224","DOIUrl":null,"url":null,"abstract":"In this work, we study three problems related to the $L_1$-influence on\nquantum Boolean cubes. In the first place, we obtain a dimension free bound for\n$L_1$-influence, which implies the quantum $L^1$-KKL Theorem result obtained by\nRouze, Wirth and Zhang. Beyond that, we also obtain a high order quantum\nTalagrand inequality and quantum $L^1$-KKL theorem. Lastly, we prove a\nquantitative relation between the noise stability and $L^1$-influence. To this\nend, our technique involves the random restrictions method as well as semigroup\ntheory.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric influences on quantum Boolean cubes\",\"authors\":\"David P. Blecher, Li Gao, Bang Xu\",\"doi\":\"arxiv-2409.00224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study three problems related to the $L_1$-influence on\\nquantum Boolean cubes. In the first place, we obtain a dimension free bound for\\n$L_1$-influence, which implies the quantum $L^1$-KKL Theorem result obtained by\\nRouze, Wirth and Zhang. Beyond that, we also obtain a high order quantum\\nTalagrand inequality and quantum $L^1$-KKL theorem. Lastly, we prove a\\nquantitative relation between the noise stability and $L^1$-influence. To this\\nend, our technique involves the random restrictions method as well as semigroup\\ntheory.\",\"PeriodicalId\":501036,\"journal\":{\"name\":\"arXiv - MATH - Functional Analysis\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了与量子布尔立方体上的 $L_1$ 影响有关的三个问题。首先,我们得到了$L_1$-影响的无维约束,这意味着鲁兹、维斯和张得到的量子$L^1$-KKL定理结果。除此之外,我们还得到了高阶量子塔拉格兰德不等式和量子 $L^1$-KKL 定理。最后,我们证明了噪声稳定性与 $L^1$ 影响之间的定量关系。为此,我们的技术涉及随机限制方法和半规则理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric influences on quantum Boolean cubes
In this work, we study three problems related to the $L_1$-influence on quantum Boolean cubes. In the first place, we obtain a dimension free bound for $L_1$-influence, which implies the quantum $L^1$-KKL Theorem result obtained by Rouze, Wirth and Zhang. Beyond that, we also obtain a high order quantum Talagrand inequality and quantum $L^1$-KKL theorem. Lastly, we prove a quantitative relation between the noise stability and $L^1$-influence. To this end, our technique involves the random restrictions method as well as semigroup theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信