成对核与截断托普利兹算子

M. Cristina Câmara, Jonathan R. Partington
{"title":"成对核与截断托普利兹算子","authors":"M. Cristina Câmara, Jonathan R. Partington","doi":"arxiv-2409.02563","DOIUrl":null,"url":null,"abstract":"This paper considers paired operators in the context of the Lebesgue Hilbert\nspace $L^2$ on the unit circle and its subspace, the Hardy space $H^2$. The\nkernels of such operators, together with their analytic projections, which are\ngeneralizations of Toeplitz kernels, are studied. Inclusion relations between\nsuch kernels are considered in detail, and the results are applied to\ndescribing the kernels of finite-rank asymmetric truncated Toeplitz operators.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Paired kernels and truncated Toeplitz operators\",\"authors\":\"M. Cristina Câmara, Jonathan R. Partington\",\"doi\":\"arxiv-2409.02563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers paired operators in the context of the Lebesgue Hilbert\\nspace $L^2$ on the unit circle and its subspace, the Hardy space $H^2$. The\\nkernels of such operators, together with their analytic projections, which are\\ngeneralizations of Toeplitz kernels, are studied. Inclusion relations between\\nsuch kernels are considered in detail, and the results are applied to\\ndescribing the kernels of finite-rank asymmetric truncated Toeplitz operators.\",\"PeriodicalId\":501036,\"journal\":{\"name\":\"arXiv - MATH - Functional Analysis\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在单位圆上的勒贝格希尔伯特空间 $L^2$ 及其子空间哈代空间 $H^2$ 的背景下研究成对算子。研究了这类算子的核及其解析投影,它们是托普利兹核的广义。研究详细考虑了这些核之间的包含关系,并将结果应用于描述有限级非对称截断托普利兹算子的核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Paired kernels and truncated Toeplitz operators
This paper considers paired operators in the context of the Lebesgue Hilbert space $L^2$ on the unit circle and its subspace, the Hardy space $H^2$. The kernels of such operators, together with their analytic projections, which are generalizations of Toeplitz kernels, are studied. Inclusion relations between such kernels are considered in detail, and the results are applied to describing the kernels of finite-rank asymmetric truncated Toeplitz operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信