关于哈尔莫斯问题的说明

Maximiliano Contino, Eva Gallardo-Gutierrez
{"title":"关于哈尔莫斯问题的说明","authors":"Maximiliano Contino, Eva Gallardo-Gutierrez","doi":"arxiv-2409.01167","DOIUrl":null,"url":null,"abstract":"We address the existence of non-trivial closed invariant subspaces of\noperators $T$ on Banach spaces whenever their square $T^2$ have or, more\ngenerally, whether there exists a polynomial $p$ with $\\mbox{deg}(p)\\geq 2$\nsuch that the lattice of invariant subspaces of $p(T)$ is non-trivial. In the\nHilbert space setting, the $T^2$-problem was posed by Halmos in the seventies\nand in 2007, Foias, Jung, Ko and Pearcy conjectured it could be equivalent to\nthe \\emph{Invariant Subspace Problem}.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on a Halmos problem\",\"authors\":\"Maximiliano Contino, Eva Gallardo-Gutierrez\",\"doi\":\"arxiv-2409.01167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the existence of non-trivial closed invariant subspaces of\\noperators $T$ on Banach spaces whenever their square $T^2$ have or, more\\ngenerally, whether there exists a polynomial $p$ with $\\\\mbox{deg}(p)\\\\geq 2$\\nsuch that the lattice of invariant subspaces of $p(T)$ is non-trivial. In the\\nHilbert space setting, the $T^2$-problem was posed by Halmos in the seventies\\nand in 2007, Foias, Jung, Ko and Pearcy conjectured it could be equivalent to\\nthe \\\\emph{Invariant Subspace Problem}.\",\"PeriodicalId\":501036,\"journal\":{\"name\":\"arXiv - MATH - Functional Analysis\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究巴拿赫空间上运算符 $T$ 的非三维封闭不变子空间的存在性,只要它们的平方 $T^2$ 有,或者更广义地说,是否存在一个多项式 $p$ 与 $\mbox{deg}(p)\geq 2$,使得 $p(T)$ 的不变子空间网格是非三维的。在希尔伯特空间环境中,$T^2$问题是由哈尔莫斯在70年代提出的,而在2007年,福艾斯、郑、高和皮尔西猜想它可能等价于 "不变子空间问题"(the \emph{Invariant Subspace Problem})。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on a Halmos problem
We address the existence of non-trivial closed invariant subspaces of operators $T$ on Banach spaces whenever their square $T^2$ have or, more generally, whether there exists a polynomial $p$ with $\mbox{deg}(p)\geq 2$ such that the lattice of invariant subspaces of $p(T)$ is non-trivial. In the Hilbert space setting, the $T^2$-problem was posed by Halmos in the seventies and in 2007, Foias, Jung, Ko and Pearcy conjectured it could be equivalent to the \emph{Invariant Subspace Problem}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信