{"title":"一对有界线性算子的广义欧氏算子半径不等式","authors":"Suvendu Jana","doi":"arxiv-2409.02235","DOIUrl":null,"url":null,"abstract":"Let $ \\mathbb{B}(\\mathscr{H})$ represent the $C^*$-algebra, which consists of\nall bounded linear operators on $\\mathscr{H},$ and let $N ( .) $ be a norm on $\n\\mathbb{B}(\\mathscr{H})$. We define a norm $w_{(N,e)} (. , . )$ on $\n\\mathbb{B}^2(\\mathscr{H})$ by $$\nw_{(N,e)}(B,C)=\\underset{|\\lambda_1|^2+\\lambda_2|^2\\leq1}\\sup\n\\underset{\\theta\\in\\mathbb{R}}\\sup N\\left(\\Re\n\\left(e^{i\\theta}(\\lambda_1B+\\lambda_2C)\\right)\\right),$$ for every\n$B,C\\in\\mathbb{B}(\\mathscr{H})$ and $\\lambda_1,\\lambda_2\\in\\mathbb{C}.$ We\ninvestigate basic properties of this norm and prove some bounds involving it.\nIn particular, when $N( .)$ is the Hilbert-Schmidt norm, we prove some\nHilbert-Schmidt Euclidean operator radius inequalities for a pair of bounded\nlinear operators.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Euclidean operator radius inequalities of a pair of bounded linear operators\",\"authors\":\"Suvendu Jana\",\"doi\":\"arxiv-2409.02235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $ \\\\mathbb{B}(\\\\mathscr{H})$ represent the $C^*$-algebra, which consists of\\nall bounded linear operators on $\\\\mathscr{H},$ and let $N ( .) $ be a norm on $\\n\\\\mathbb{B}(\\\\mathscr{H})$. We define a norm $w_{(N,e)} (. , . )$ on $\\n\\\\mathbb{B}^2(\\\\mathscr{H})$ by $$\\nw_{(N,e)}(B,C)=\\\\underset{|\\\\lambda_1|^2+\\\\lambda_2|^2\\\\leq1}\\\\sup\\n\\\\underset{\\\\theta\\\\in\\\\mathbb{R}}\\\\sup N\\\\left(\\\\Re\\n\\\\left(e^{i\\\\theta}(\\\\lambda_1B+\\\\lambda_2C)\\\\right)\\\\right),$$ for every\\n$B,C\\\\in\\\\mathbb{B}(\\\\mathscr{H})$ and $\\\\lambda_1,\\\\lambda_2\\\\in\\\\mathbb{C}.$ We\\ninvestigate basic properties of this norm and prove some bounds involving it.\\nIn particular, when $N( .)$ is the Hilbert-Schmidt norm, we prove some\\nHilbert-Schmidt Euclidean operator radius inequalities for a pair of bounded\\nlinear operators.\",\"PeriodicalId\":501036,\"journal\":{\"name\":\"arXiv - MATH - Functional Analysis\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 $ \mathbb{B}(\mathscr{H})$ 表示 $C^*$-代数,它由 $\mathscr{H} 上的所有有界线性算子组成,并让 $N ( .) $ 是 $\mathbb{B}(\mathscr{H})$ 上的一个规范。我们定义一个在 $\mathbb{B}(\mathscr{H} $ 上的规范 $w_{(N,e)} (. , .)$ on $\mathbb{B}^2(\mathscr{H})$ by $$w_{(N,e)}(B. C)=\underset{B、C)=underset{|\lambda_1|^2+\lambda_2|^2\leq1}\supunderset{theta\in\mathbb{R}}\sup N\left(\Re\left(e^{i\theta}(\lambda_1B+\lambda_2C)\right)\right)、$$ for every$B,Cin\mathbb{B}(\mathscr{H})$ and $\lambda_1,\lambda_2\in\mathbb{C}.特别是,当 $N( .)$ 是希尔伯特-施密特规范时,我们证明了一对有界线性算子的一些希尔伯特-施密特欧几里得算子半径不等式。
Generalized Euclidean operator radius inequalities of a pair of bounded linear operators
Let $ \mathbb{B}(\mathscr{H})$ represent the $C^*$-algebra, which consists of
all bounded linear operators on $\mathscr{H},$ and let $N ( .) $ be a norm on $
\mathbb{B}(\mathscr{H})$. We define a norm $w_{(N,e)} (. , . )$ on $
\mathbb{B}^2(\mathscr{H})$ by $$
w_{(N,e)}(B,C)=\underset{|\lambda_1|^2+\lambda_2|^2\leq1}\sup
\underset{\theta\in\mathbb{R}}\sup N\left(\Re
\left(e^{i\theta}(\lambda_1B+\lambda_2C)\right)\right),$$ for every
$B,C\in\mathbb{B}(\mathscr{H})$ and $\lambda_1,\lambda_2\in\mathbb{C}.$ We
investigate basic properties of this norm and prove some bounds involving it.
In particular, when $N( .)$ is the Hilbert-Schmidt norm, we prove some
Hilbert-Schmidt Euclidean operator radius inequalities for a pair of bounded
linear operators.