$0 的矢量值 $H_p$ 空间之间的同构关系

Fernando Albiac, Jose L. Ansorena
{"title":"$0 的矢量值 $H_p$ 空间之间的同构关系","authors":"Fernando Albiac, Jose L. Ansorena","doi":"arxiv-2409.04866","DOIUrl":null,"url":null,"abstract":"The aim of this paper is twofold. On the one hand, we manage to identify\nBanach-valued Hardy spaces of analytic functions over the disc $\\mathbb{D}$\nwith other classes of Hardy spaces, thus complementing the existing literature\non the subject. On the other hand, we develop new techniques that allow us to\nprove that certain Hilbert-valued atomic lattices have a unique unconditional\nbasis, up to normalization, equivalence and permutation. Combining both lines\nof action we show that that $H_p(\\mathbb{D},\\ell_2)$ for $0<p<1$ has a unique\natomic lattice structure. The proof of this result relies on the validity of\nsome new lattice estimates for non-locally convex spaces which hold an\nindependent interest.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isomorphisms between vector-valued $H_p$-spaces for $0\",\"authors\":\"Fernando Albiac, Jose L. Ansorena\",\"doi\":\"arxiv-2409.04866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is twofold. On the one hand, we manage to identify\\nBanach-valued Hardy spaces of analytic functions over the disc $\\\\mathbb{D}$\\nwith other classes of Hardy spaces, thus complementing the existing literature\\non the subject. On the other hand, we develop new techniques that allow us to\\nprove that certain Hilbert-valued atomic lattices have a unique unconditional\\nbasis, up to normalization, equivalence and permutation. Combining both lines\\nof action we show that that $H_p(\\\\mathbb{D},\\\\ell_2)$ for $0<p<1$ has a unique\\natomic lattice structure. The proof of this result relies on the validity of\\nsome new lattice estimates for non-locally convex spaces which hold an\\nindependent interest.\",\"PeriodicalId\":501036,\"journal\":{\"name\":\"arXiv - MATH - Functional Analysis\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的有两个。一方面,我们设法将圆盘 $mathbb{D}$ 上解析函数的巴拿赫值哈代空间与其他类别的哈代空间相鉴别,从而补充了关于这一主题的现有文献。另一方面,我们开发了新技术,使我们能够证明某些希尔伯特值原子网格具有唯一的无条件基础,直到归一化、等价和置换。结合这两条行动路线,我们证明了 $H_p(\mathbb{D},\ell_2)$ 对于 $0本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Isomorphisms between vector-valued $H_p$-spaces for $0
The aim of this paper is twofold. On the one hand, we manage to identify Banach-valued Hardy spaces of analytic functions over the disc $\mathbb{D}$ with other classes of Hardy spaces, thus complementing the existing literature on the subject. On the other hand, we develop new techniques that allow us to prove that certain Hilbert-valued atomic lattices have a unique unconditional basis, up to normalization, equivalence and permutation. Combining both lines of action we show that that $H_p(\mathbb{D},\ell_2)$ for $0
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信