函数空间弱特征的二元方法

Galia Dafni, Shahaboddin Shaabani
{"title":"函数空间弱特征的二元方法","authors":"Galia Dafni, Shahaboddin Shaabani","doi":"arxiv-2409.07395","DOIUrl":null,"url":null,"abstract":"Weak-type quasi-norms are defined using the mean oscillation or the mean of a\nfunction on dyadic cubes, providing discrete analogues and variants of the\ncorresponding quasi-norms on the upper half-space previously considered in the\nliterature. Comparing the resulting function spaces to known function spaces\nsuch as $\\dot{W}^{1,p}(\\rn)$, $\\JNp$, $\\Lp$ and weak-$\\Lp$ gives new embeddings\nand characterizations of these spaces. Examples are provided to prove the\nsharpness of the results.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dyadic Approach to Weak Characterizations of Function Spaces\",\"authors\":\"Galia Dafni, Shahaboddin Shaabani\",\"doi\":\"arxiv-2409.07395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Weak-type quasi-norms are defined using the mean oscillation or the mean of a\\nfunction on dyadic cubes, providing discrete analogues and variants of the\\ncorresponding quasi-norms on the upper half-space previously considered in the\\nliterature. Comparing the resulting function spaces to known function spaces\\nsuch as $\\\\dot{W}^{1,p}(\\\\rn)$, $\\\\JNp$, $\\\\Lp$ and weak-$\\\\Lp$ gives new embeddings\\nand characterizations of these spaces. Examples are provided to prove the\\nsharpness of the results.\",\"PeriodicalId\":501036,\"journal\":{\"name\":\"arXiv - MATH - Functional Analysis\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

弱型准正则是利用二元立方体上函数的均值振荡或均值定义的,它提供了以前文献中考虑的上半空间上相应准正则的离散类似物和变体。将得到的函数空间与已知的函数空间如 $\dot{W}^{1,p}(\rn)$, $\JNp$, $\Lp$ 和 weak-$\Lp$ 进行比较,给出了这些空间的新的嵌入和特征。我们还提供了一些例子来证明这些结果的清晰性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Dyadic Approach to Weak Characterizations of Function Spaces
Weak-type quasi-norms are defined using the mean oscillation or the mean of a function on dyadic cubes, providing discrete analogues and variants of the corresponding quasi-norms on the upper half-space previously considered in the literature. Comparing the resulting function spaces to known function spaces such as $\dot{W}^{1,p}(\rn)$, $\JNp$, $\Lp$ and weak-$\Lp$ gives new embeddings and characterizations of these spaces. Examples are provided to prove the sharpness of the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信