稳健的财务校准:神经 SDE 的贝叶斯方法

Christa Cuchiero, Eva Flonner, Kevin Kurt
{"title":"稳健的财务校准:神经 SDE 的贝叶斯方法","authors":"Christa Cuchiero, Eva Flonner, Kevin Kurt","doi":"arxiv-2409.06551","DOIUrl":null,"url":null,"abstract":"The paper presents a Bayesian framework for the calibration of financial\nmodels using neural stochastic differential equations (neural SDEs). The method\nis based on the specification of a prior distribution on the neural network\nweights and an adequately chosen likelihood function. The resulting posterior\ndistribution can be seen as a mixture of different classical neural SDE models\nyielding robust bounds on the implied volatility surface. Both, historical\nfinancial time series data and option price data are taken into consideration,\nwhich necessitates a methodology to learn the change of measure between the\nrisk-neutral and the historical measure. The key ingredient for a robust\nnumerical optimization of the neural networks is to apply a Langevin-type\nalgorithm, commonly used in the Bayesian approaches to draw posterior samples.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"252 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust financial calibration: a Bayesian approach for neural SDEs\",\"authors\":\"Christa Cuchiero, Eva Flonner, Kevin Kurt\",\"doi\":\"arxiv-2409.06551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a Bayesian framework for the calibration of financial\\nmodels using neural stochastic differential equations (neural SDEs). The method\\nis based on the specification of a prior distribution on the neural network\\nweights and an adequately chosen likelihood function. The resulting posterior\\ndistribution can be seen as a mixture of different classical neural SDE models\\nyielding robust bounds on the implied volatility surface. Both, historical\\nfinancial time series data and option price data are taken into consideration,\\nwhich necessitates a methodology to learn the change of measure between the\\nrisk-neutral and the historical measure. The key ingredient for a robust\\nnumerical optimization of the neural networks is to apply a Langevin-type\\nalgorithm, commonly used in the Bayesian approaches to draw posterior samples.\",\"PeriodicalId\":501294,\"journal\":{\"name\":\"arXiv - QuantFin - Computational Finance\",\"volume\":\"252 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Computational Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个使用神经随机微分方程校准金融模型的贝叶斯框架。该方法基于对神经网络权重的先验分布和适当选择的似然函数的指定。由此产生的后验分布可视为不同经典神经 SDE 模型的混合物,对隐含波动率表面产生稳健的约束。历史金融时间序列数据和期权价格数据都被考虑在内,这就需要一种方法来学习风险中性度量和历史度量之间的度量变化。对神经网络进行稳健数值优化的关键要素是应用朗格文算法,该算法常用于贝叶斯方法中的后验样本提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust financial calibration: a Bayesian approach for neural SDEs
The paper presents a Bayesian framework for the calibration of financial models using neural stochastic differential equations (neural SDEs). The method is based on the specification of a prior distribution on the neural network weights and an adequately chosen likelihood function. The resulting posterior distribution can be seen as a mixture of different classical neural SDE models yielding robust bounds on the implied volatility surface. Both, historical financial time series data and option price data are taken into consideration, which necessitates a methodology to learn the change of measure between the risk-neutral and the historical measure. The key ingredient for a robust numerical optimization of the neural networks is to apply a Langevin-type algorithm, commonly used in the Bayesian approaches to draw posterior samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信