优化停止问题的深度原始双 BSDE 方法

Jiefei Yang, Guanglian Li
{"title":"优化停止问题的深度原始双 BSDE 方法","authors":"Jiefei Yang, Guanglian Li","doi":"arxiv-2409.06937","DOIUrl":null,"url":null,"abstract":"We present a new deep primal-dual backward stochastic differential equation\nframework based on stopping time iteration to solve optimal stopping problems.\nA novel loss function is proposed to learn the conditional expectation, which\nconsists of subnetwork parameterization of a continuation value and spatial\ngradients from present up to the stopping time. Notable features of the method\ninclude: (i) The martingale part in the loss function reduces the variance of\nstochastic gradients, which facilitates the training of the neural networks as\nwell as alleviates the error propagation of value function approximation; (ii)\nthis martingale approximates the martingale in the Doob-Meyer decomposition,\nand thus leads to a true upper bound for the optimal value in a non-nested\nMonte Carlo way. We test the proposed method in American option pricing\nproblems, where the spatial gradient network yields the hedging ratio directly.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep primal-dual BSDE method for optimal stopping problems\",\"authors\":\"Jiefei Yang, Guanglian Li\",\"doi\":\"arxiv-2409.06937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new deep primal-dual backward stochastic differential equation\\nframework based on stopping time iteration to solve optimal stopping problems.\\nA novel loss function is proposed to learn the conditional expectation, which\\nconsists of subnetwork parameterization of a continuation value and spatial\\ngradients from present up to the stopping time. Notable features of the method\\ninclude: (i) The martingale part in the loss function reduces the variance of\\nstochastic gradients, which facilitates the training of the neural networks as\\nwell as alleviates the error propagation of value function approximation; (ii)\\nthis martingale approximates the martingale in the Doob-Meyer decomposition,\\nand thus leads to a true upper bound for the optimal value in a non-nested\\nMonte Carlo way. We test the proposed method in American option pricing\\nproblems, where the spatial gradient network yields the hedging ratio directly.\",\"PeriodicalId\":501294,\"journal\":{\"name\":\"arXiv - QuantFin - Computational Finance\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Computational Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的基于停止时间迭代的深度原始双向后向随机微分方程框架来解决最优停止问题。我们提出了一种新的损失函数来学习条件期望,条件期望由延续值的子网络参数化和从现在到停止时间的空间梯度组成。该方法的显著特点包括(i) 损失函数中的马丁格尔部分减小了随机梯度的方差,这有利于神经网络的训练,并减轻了价值函数近似的误差传播;(ii) 该马丁格尔近似于 Doob-Meyer 分解中的马丁格尔,因此能以非嵌套蒙特卡罗的方式得出最优值的真实上界。我们在美式期权定价问题中检验了所提出的方法,在这些问题中,空间梯度网络可以直接得到对冲比率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A deep primal-dual BSDE method for optimal stopping problems
We present a new deep primal-dual backward stochastic differential equation framework based on stopping time iteration to solve optimal stopping problems. A novel loss function is proposed to learn the conditional expectation, which consists of subnetwork parameterization of a continuation value and spatial gradients from present up to the stopping time. Notable features of the method include: (i) The martingale part in the loss function reduces the variance of stochastic gradients, which facilitates the training of the neural networks as well as alleviates the error propagation of value function approximation; (ii) this martingale approximates the martingale in the Doob-Meyer decomposition, and thus leads to a true upper bound for the optimal value in a non-nested Monte Carlo way. We test the proposed method in American option pricing problems, where the spatial gradient network yields the hedging ratio directly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信