强制一维蜂群模型

Md Sayeed Anwar, Dibakar Ghosh, Kevin O'Keeffe
{"title":"强制一维蜂群模型","authors":"Md Sayeed Anwar, Dibakar Ghosh, Kevin O'Keeffe","doi":"arxiv-2409.05342","DOIUrl":null,"url":null,"abstract":"We study a simple model of swarmalators subject to periodic forcing and\nconfined to move around a one-dimensional ring. This is a toy model for\nphysical systems with a mix of sync, swarming, and forcing such as colloidal\nmicromotors. We find several emergent macrostates and characterize the phase\nboundaries between them analytically. The most novel state is a swarmalator\nchimera, where the population splits into two sync dots, which enclose a\n`train' of swarmalators that run around a peanut-shaped loop.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The forced one-dimensional swarmalator model\",\"authors\":\"Md Sayeed Anwar, Dibakar Ghosh, Kevin O'Keeffe\",\"doi\":\"arxiv-2409.05342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a simple model of swarmalators subject to periodic forcing and\\nconfined to move around a one-dimensional ring. This is a toy model for\\nphysical systems with a mix of sync, swarming, and forcing such as colloidal\\nmicromotors. We find several emergent macrostates and characterize the phase\\nboundaries between them analytically. The most novel state is a swarmalator\\nchimera, where the population splits into two sync dots, which enclose a\\n`train' of swarmalators that run around a peanut-shaped loop.\",\"PeriodicalId\":501305,\"journal\":{\"name\":\"arXiv - PHYS - Adaptation and Self-Organizing Systems\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Adaptation and Self-Organizing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个简单的蜂群模型,它受到周期性的强迫,只能围绕一维环运动。这是一个混合了同步、蜂群和强迫(如胶体微电机)的物理系统的玩具模型。我们发现了几种新出现的宏观状态,并对它们之间的相界进行了分析。最新颖的状态是蜂群态,在这种状态下,种群分裂成两个同步点,这两个同步点包围着围绕花生形环路运行的蜂群 "列车"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The forced one-dimensional swarmalator model
We study a simple model of swarmalators subject to periodic forcing and confined to move around a one-dimensional ring. This is a toy model for physical systems with a mix of sync, swarming, and forcing such as colloidal micromotors. We find several emergent macrostates and characterize the phase boundaries between them analytically. The most novel state is a swarmalator chimera, where the population splits into two sync dots, which enclose a `train' of swarmalators that run around a peanut-shaped loop.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信