{"title":"基于时延的非线性汽车主动悬架系统自适应模糊逻辑控制新方法","authors":"Ghazally IY Mustafa, Haoping Wang","doi":"10.1177/10775463241281395","DOIUrl":null,"url":null,"abstract":"This paper proposes a new adaptive fuzzy logic control for nonlinear car active suspension systems based on the time delay (TDAFLC). The proposed method comprises three terms: First, time-delay estimation (TDE) is used as an ultra-local model to estimate the active suspension system nonlinearities and unknown dynamics. Second, a desired dynamics injection part. Third, the adaptive fuzzy logic control is used as an extra input to reduce the effect of the TDE error. The adaptive fuzzy logic control is designed on a new sliding surface to achieve the desired error dynamics. The benefits of the TDAFLC controller are its simple structure and ease of regulation. In addition, the theoretical investigation of system stability, convergence speed, and control accuracy are demonstrated. Finally, using a co-simulation platform, the validation process compares TDAFLC to TDC, PID, and the conventional passive system for a two-degree-of-freedom quarter car active suspension system under different road excitations.","PeriodicalId":17511,"journal":{"name":"Journal of Vibration and Control","volume":"22 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new adaptive fuzzy logic control for nonlinear car active suspension systems based on the time-delay\",\"authors\":\"Ghazally IY Mustafa, Haoping Wang\",\"doi\":\"10.1177/10775463241281395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new adaptive fuzzy logic control for nonlinear car active suspension systems based on the time delay (TDAFLC). The proposed method comprises three terms: First, time-delay estimation (TDE) is used as an ultra-local model to estimate the active suspension system nonlinearities and unknown dynamics. Second, a desired dynamics injection part. Third, the adaptive fuzzy logic control is used as an extra input to reduce the effect of the TDE error. The adaptive fuzzy logic control is designed on a new sliding surface to achieve the desired error dynamics. The benefits of the TDAFLC controller are its simple structure and ease of regulation. In addition, the theoretical investigation of system stability, convergence speed, and control accuracy are demonstrated. Finally, using a co-simulation platform, the validation process compares TDAFLC to TDC, PID, and the conventional passive system for a two-degree-of-freedom quarter car active suspension system under different road excitations.\",\"PeriodicalId\":17511,\"journal\":{\"name\":\"Journal of Vibration and Control\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibration and Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10775463241281395\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10775463241281395","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
A new adaptive fuzzy logic control for nonlinear car active suspension systems based on the time-delay
This paper proposes a new adaptive fuzzy logic control for nonlinear car active suspension systems based on the time delay (TDAFLC). The proposed method comprises three terms: First, time-delay estimation (TDE) is used as an ultra-local model to estimate the active suspension system nonlinearities and unknown dynamics. Second, a desired dynamics injection part. Third, the adaptive fuzzy logic control is used as an extra input to reduce the effect of the TDE error. The adaptive fuzzy logic control is designed on a new sliding surface to achieve the desired error dynamics. The benefits of the TDAFLC controller are its simple structure and ease of regulation. In addition, the theoretical investigation of system stability, convergence speed, and control accuracy are demonstrated. Finally, using a co-simulation platform, the validation process compares TDAFLC to TDC, PID, and the conventional passive system for a two-degree-of-freedom quarter car active suspension system under different road excitations.
期刊介绍:
The Journal of Vibration and Control is a peer-reviewed journal of analytical, computational and experimental studies of vibration phenomena and their control. The scope encompasses all linear and nonlinear vibration phenomena and covers topics such as: vibration and control of structures and machinery, signal analysis, aeroelasticity, neural networks, structural control and acoustics, noise and noise control, waves in solids and fluids and shock waves.