Louis Otto Pienaar, Rafael Calama, Jorge Olivar, Camilla Wellstein, Hans Pretzsch, Ben du Toit
{"title":"用于估算南非西开普省短轮伐期黑松林生物量和碳库的异速方程","authors":"Louis Otto Pienaar, Rafael Calama, Jorge Olivar, Camilla Wellstein, Hans Pretzsch, Ben du Toit","doi":"10.1007/s10342-024-01730-9","DOIUrl":null,"url":null,"abstract":"<p>The quantification of tree growth and carbon storage over time is an important task for sustainable forest management and carbon sequestration projects. For the South African short-rotation <i>Pinus radiata</i> (D. Don) forests, this knowledge is lacking. We developed allometric equations and compared the estimated weights to previously published biomass studies and we used Dirichlet Regression (DR) modelling to ensure additivity of the component proportions. The biomass components and their contribution to carbon storage depend strongly on forest structure and mean tree size but also on-site conditions and tree architecture. Our first two hypotheses were that the (1) best model for stemwood (SW), bark and total mass will include the combined variable DBH<sup>2</sup>H and (2) that the DR will yield statistically similar estimates for all components when compared to the best models. Our third hypothesis was that allometric equations developed for sites with high resource availability (e.g. wet, fertile sites) will yield biased estimates when extrapolated to sites with lower levels of resource availability (drier and/or infertile sites). The results indicated that DBH<sup>2</sup>H was the best variable to describe SW, bark and total mass and the DR yield similar estimates for all component proportions when compared to the best models. There were strong similarities in the SW and total mass of independent test sites in comparison to the SW and total mass of this study but greater variability in the bark, needle and branch mass. This can be associated to site and seasonal differences as well as variability in tree architecture brought about by different silvicultural operations on individual sites. Previously developed equations by other authors for sites with high resource availability overpredicted the SW and total mass of the models developed in this study. Our set of additive component equations performed well even when applied to sites of similar productivity over a climate gradient. The presented new equations bridge the gap in knowledge where allometric equations for short rotation Radiata pine stands are lacking.</p>","PeriodicalId":11996,"journal":{"name":"European Journal of Forest Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Allometric equations for biomass and carbon pool estimation in short rotation Pinus radiata stands of the Western Cape, South Africa\",\"authors\":\"Louis Otto Pienaar, Rafael Calama, Jorge Olivar, Camilla Wellstein, Hans Pretzsch, Ben du Toit\",\"doi\":\"10.1007/s10342-024-01730-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The quantification of tree growth and carbon storage over time is an important task for sustainable forest management and carbon sequestration projects. For the South African short-rotation <i>Pinus radiata</i> (D. Don) forests, this knowledge is lacking. We developed allometric equations and compared the estimated weights to previously published biomass studies and we used Dirichlet Regression (DR) modelling to ensure additivity of the component proportions. The biomass components and their contribution to carbon storage depend strongly on forest structure and mean tree size but also on-site conditions and tree architecture. Our first two hypotheses were that the (1) best model for stemwood (SW), bark and total mass will include the combined variable DBH<sup>2</sup>H and (2) that the DR will yield statistically similar estimates for all components when compared to the best models. Our third hypothesis was that allometric equations developed for sites with high resource availability (e.g. wet, fertile sites) will yield biased estimates when extrapolated to sites with lower levels of resource availability (drier and/or infertile sites). The results indicated that DBH<sup>2</sup>H was the best variable to describe SW, bark and total mass and the DR yield similar estimates for all component proportions when compared to the best models. There were strong similarities in the SW and total mass of independent test sites in comparison to the SW and total mass of this study but greater variability in the bark, needle and branch mass. This can be associated to site and seasonal differences as well as variability in tree architecture brought about by different silvicultural operations on individual sites. Previously developed equations by other authors for sites with high resource availability overpredicted the SW and total mass of the models developed in this study. Our set of additive component equations performed well even when applied to sites of similar productivity over a climate gradient. The presented new equations bridge the gap in knowledge where allometric equations for short rotation Radiata pine stands are lacking.</p>\",\"PeriodicalId\":11996,\"journal\":{\"name\":\"European Journal of Forest Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Forest Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10342-024-01730-9\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Forest Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10342-024-01730-9","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Allometric equations for biomass and carbon pool estimation in short rotation Pinus radiata stands of the Western Cape, South Africa
The quantification of tree growth and carbon storage over time is an important task for sustainable forest management and carbon sequestration projects. For the South African short-rotation Pinus radiata (D. Don) forests, this knowledge is lacking. We developed allometric equations and compared the estimated weights to previously published biomass studies and we used Dirichlet Regression (DR) modelling to ensure additivity of the component proportions. The biomass components and their contribution to carbon storage depend strongly on forest structure and mean tree size but also on-site conditions and tree architecture. Our first two hypotheses were that the (1) best model for stemwood (SW), bark and total mass will include the combined variable DBH2H and (2) that the DR will yield statistically similar estimates for all components when compared to the best models. Our third hypothesis was that allometric equations developed for sites with high resource availability (e.g. wet, fertile sites) will yield biased estimates when extrapolated to sites with lower levels of resource availability (drier and/or infertile sites). The results indicated that DBH2H was the best variable to describe SW, bark and total mass and the DR yield similar estimates for all component proportions when compared to the best models. There were strong similarities in the SW and total mass of independent test sites in comparison to the SW and total mass of this study but greater variability in the bark, needle and branch mass. This can be associated to site and seasonal differences as well as variability in tree architecture brought about by different silvicultural operations on individual sites. Previously developed equations by other authors for sites with high resource availability overpredicted the SW and total mass of the models developed in this study. Our set of additive component equations performed well even when applied to sites of similar productivity over a climate gradient. The presented new equations bridge the gap in knowledge where allometric equations for short rotation Radiata pine stands are lacking.
期刊介绍:
The European Journal of Forest Research focuses on publishing innovative results of empirical or model-oriented studies which contribute to the development of broad principles underlying forest ecosystems, their functions and services.
Papers which exclusively report methods, models, techniques or case studies are beyond the scope of the journal, while papers on studies at the molecular or cellular level will be considered where they address the relevance of their results to the understanding of ecosystem structure and function. Papers relating to forest operations and forest engineering will be considered if they are tailored within a forest ecosystem context.