Junjie Zhao, Fan Wang, Qidong Ruan, Yong Wu, Bing Zhang, Yingying Lu
{"title":"用于快速发展的可再生能源发电厂的混合储能系统","authors":"Junjie Zhao, Fan Wang, Qidong Ruan, Yong Wu, Bing Zhang, Yingying Lu","doi":"10.1088/2515-7655/ad6fd4","DOIUrl":null,"url":null,"abstract":"To achieve zero carbon emissions, renewable energy sources are highly promising alternatives to fossil fuels. However, the intermittency of renewable energy sources hinders the balancing of power grid loads. Because energy storage systems (ESSs) play a critical role in boosting the efficiency of renewable energy sources and economizing energy generation, different ESSs and their applications in various environments must be comprehensively investigated. With sustained growth in the global demand for ESSs, reliance on a single technology may not comprehensively fulfill the anticipated requirements for the ESS cycling life, efficiency, cost, and energy/power densities. Hence, hybrid ESSs (HESSs), combining two/multiple ESSs, offer a promising solution to overcome the constraints of a single ESS and optimize energy management and utilization. Therefore, this review extensively and comprehensively describes ESSs, including their classifications, mechanisms, strengths, and weaknesses, and introduces several typical HESS energy management strategies and application domains.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":"7 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid energy storage systems for fast-developing renewable energy plants\",\"authors\":\"Junjie Zhao, Fan Wang, Qidong Ruan, Yong Wu, Bing Zhang, Yingying Lu\",\"doi\":\"10.1088/2515-7655/ad6fd4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To achieve zero carbon emissions, renewable energy sources are highly promising alternatives to fossil fuels. However, the intermittency of renewable energy sources hinders the balancing of power grid loads. Because energy storage systems (ESSs) play a critical role in boosting the efficiency of renewable energy sources and economizing energy generation, different ESSs and their applications in various environments must be comprehensively investigated. With sustained growth in the global demand for ESSs, reliance on a single technology may not comprehensively fulfill the anticipated requirements for the ESS cycling life, efficiency, cost, and energy/power densities. Hence, hybrid ESSs (HESSs), combining two/multiple ESSs, offer a promising solution to overcome the constraints of a single ESS and optimize energy management and utilization. Therefore, this review extensively and comprehensively describes ESSs, including their classifications, mechanisms, strengths, and weaknesses, and introduces several typical HESS energy management strategies and application domains.\",\"PeriodicalId\":48500,\"journal\":{\"name\":\"Journal of Physics-Energy\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics-Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2515-7655/ad6fd4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2515-7655/ad6fd4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Hybrid energy storage systems for fast-developing renewable energy plants
To achieve zero carbon emissions, renewable energy sources are highly promising alternatives to fossil fuels. However, the intermittency of renewable energy sources hinders the balancing of power grid loads. Because energy storage systems (ESSs) play a critical role in boosting the efficiency of renewable energy sources and economizing energy generation, different ESSs and their applications in various environments must be comprehensively investigated. With sustained growth in the global demand for ESSs, reliance on a single technology may not comprehensively fulfill the anticipated requirements for the ESS cycling life, efficiency, cost, and energy/power densities. Hence, hybrid ESSs (HESSs), combining two/multiple ESSs, offer a promising solution to overcome the constraints of a single ESS and optimize energy management and utilization. Therefore, this review extensively and comprehensively describes ESSs, including their classifications, mechanisms, strengths, and weaknesses, and introduces several typical HESS energy management strategies and application domains.
期刊介绍:
The Journal of Physics-Energy is an interdisciplinary and fully open-access publication dedicated to setting the agenda for the identification and dissemination of the most exciting and significant advancements in all realms of energy-related research. Committed to the principles of open science, JPhys Energy is designed to maximize the exchange of knowledge between both established and emerging communities, thereby fostering a collaborative and inclusive environment for the advancement of energy research.