用弱渐近法求解非严格双曲守恒律系统的冲击波问题

Balakrishna Chhatria, T Raja Sekhar
{"title":"用弱渐近法求解非严格双曲守恒律系统的冲击波问题","authors":"Balakrishna Chhatria, T Raja Sekhar","doi":"10.1007/s12046-024-02564-2","DOIUrl":null,"url":null,"abstract":"<p>This article is concerned with the existence of a weak asymptotic solution for a <span>\\(5\\times 5\\)</span> system of nonstrictly hyperbolic conservation laws. We provide additional weak asymptotic expansions within the framework of the weak asymptotic approach. Then, with the aid of these weak asymptotic expansions, we establish sufficient conditions for the existence of a weak asymptotic solution for the <span>\\(5\\times 5\\)</span> system with initial data of Riemann type. Combining the Riemann problems allow us to form a weak asymptotic solution for a more general type of initial data.</p>","PeriodicalId":21498,"journal":{"name":"Sādhanā","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$$\\\\delta '''$$ -shock wave solution to a nonstrictly hyperbolic system of conservation laws using weak asymptotic method\",\"authors\":\"Balakrishna Chhatria, T Raja Sekhar\",\"doi\":\"10.1007/s12046-024-02564-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article is concerned with the existence of a weak asymptotic solution for a <span>\\\\(5\\\\times 5\\\\)</span> system of nonstrictly hyperbolic conservation laws. We provide additional weak asymptotic expansions within the framework of the weak asymptotic approach. Then, with the aid of these weak asymptotic expansions, we establish sufficient conditions for the existence of a weak asymptotic solution for the <span>\\\\(5\\\\times 5\\\\)</span> system with initial data of Riemann type. Combining the Riemann problems allow us to form a weak asymptotic solution for a more general type of initial data.</p>\",\"PeriodicalId\":21498,\"journal\":{\"name\":\"Sādhanā\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sādhanā\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12046-024-02564-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sādhanā","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12046-024-02564-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文关注的是非严格双曲守恒律的\(5\times 5\) 系统的弱渐近解的存在性。我们在弱渐近方法的框架内提供了额外的弱渐近展开。然后,借助这些弱渐近展开,我们为具有黎曼类型初始数据的 \(5\times 5\) 系统的弱渐近解的存在建立了充分条件。将黎曼问题结合起来,我们就能为更一般类型的初始数据形成弱渐近解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$$\delta '''$$ -shock wave solution to a nonstrictly hyperbolic system of conservation laws using weak asymptotic method

This article is concerned with the existence of a weak asymptotic solution for a \(5\times 5\) system of nonstrictly hyperbolic conservation laws. We provide additional weak asymptotic expansions within the framework of the weak asymptotic approach. Then, with the aid of these weak asymptotic expansions, we establish sufficient conditions for the existence of a weak asymptotic solution for the \(5\times 5\) system with initial data of Riemann type. Combining the Riemann problems allow us to form a weak asymptotic solution for a more general type of initial data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信