用于点云压缩的规模自适应非对称稀疏变分自动编码器

IF 3.2 1区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jian Chen;Yingtao Zhu;Wei Huang;Chengdong Lan;Tiesong Zhao
{"title":"用于点云压缩的规模自适应非对称稀疏变分自动编码器","authors":"Jian Chen;Yingtao Zhu;Wei Huang;Chengdong Lan;Tiesong Zhao","doi":"10.1109/TBC.2024.3437161","DOIUrl":null,"url":null,"abstract":"Learning-based point cloud compression has achieved great success in Rate-Distortion (RD) efficiency. Existing methods usually utilize Variational AutoEncoder (VAE) network, which might lead to poor detail reconstruction and high computational complexity. To address these issues, we propose a Scale-adaptive Asymmetric Sparse Variational AutoEncoder (SAS-VAE) in this work. First, we develop an Asymmetric Multiscale Sparse Convolution (AMSC), which exploits multi-resolution branches to aggregate multiscale features at encoder, and excludes symmetric feature fusion branches to control the model complexity at decoder. Second, we design a Scale Adaptive Feature Refinement Structure (SAFRS) to adaptively adjust the number of Feature Refinement Modules (FRMs), thereby improving RD performance with an acceptable computational overhead. Third, we implement our framework with AMSC and SAFRS, and train it with an RD loss based on Fine-grained Weighted Binary Cross-Entropy (FWBCE) function. Experimental results on 8iVFB, Owlii, and MVUV datasets show that our method outperforms several popular methods, with a 90.0% time reduction and a 51.8% BD-BR saving compared with V-PCC. The code will be available soon at \n<uri>https://github.com/fancj2017/SAS-VAE</uri>\n.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"70 3","pages":"884-894"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scale-Adaptive Asymmetric Sparse Variational AutoEncoder for Point Cloud Compression\",\"authors\":\"Jian Chen;Yingtao Zhu;Wei Huang;Chengdong Lan;Tiesong Zhao\",\"doi\":\"10.1109/TBC.2024.3437161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning-based point cloud compression has achieved great success in Rate-Distortion (RD) efficiency. Existing methods usually utilize Variational AutoEncoder (VAE) network, which might lead to poor detail reconstruction and high computational complexity. To address these issues, we propose a Scale-adaptive Asymmetric Sparse Variational AutoEncoder (SAS-VAE) in this work. First, we develop an Asymmetric Multiscale Sparse Convolution (AMSC), which exploits multi-resolution branches to aggregate multiscale features at encoder, and excludes symmetric feature fusion branches to control the model complexity at decoder. Second, we design a Scale Adaptive Feature Refinement Structure (SAFRS) to adaptively adjust the number of Feature Refinement Modules (FRMs), thereby improving RD performance with an acceptable computational overhead. Third, we implement our framework with AMSC and SAFRS, and train it with an RD loss based on Fine-grained Weighted Binary Cross-Entropy (FWBCE) function. Experimental results on 8iVFB, Owlii, and MVUV datasets show that our method outperforms several popular methods, with a 90.0% time reduction and a 51.8% BD-BR saving compared with V-PCC. The code will be available soon at \\n<uri>https://github.com/fancj2017/SAS-VAE</uri>\\n.\",\"PeriodicalId\":13159,\"journal\":{\"name\":\"IEEE Transactions on Broadcasting\",\"volume\":\"70 3\",\"pages\":\"884-894\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Broadcasting\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10666159/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10666159/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

基于学习的点云压缩在速率-失真(RD)效率方面取得了巨大成功。现有的方法通常使用变异自动编码器(VAE)网络,这可能会导致细节重建效果差和计算复杂度高。为了解决这些问题,我们在本研究中提出了一种规模自适应非对称稀疏变异自动编码器(SAS-VAE)。首先,我们开发了非对称多尺度稀疏卷积(AMSC),在编码器中利用多分辨率分支聚合多尺度特征,在解码器中排除对称特征融合分支以控制模型复杂度。其次,我们设计了规模自适应特征细化结构(SAFRS),以自适应地调整特征细化模块(FRM)的数量,从而在可接受的计算开销下提高 RD 性能。第三,我们利用 AMSC 和 SAFRS 实现了我们的框架,并使用基于细粒度加权二元交叉熵(FWBCE)函数的 RD 损失对其进行了训练。在 8iVFB、Owlii 和 MVUV 数据集上的实验结果表明,我们的方法优于几种流行的方法,与 V-PCC 相比,时间缩短了 90.0%,BD-BR 节省了 51.8%。代码即将在 https://github.com/fancj2017/SAS-VAE 上发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scale-Adaptive Asymmetric Sparse Variational AutoEncoder for Point Cloud Compression
Learning-based point cloud compression has achieved great success in Rate-Distortion (RD) efficiency. Existing methods usually utilize Variational AutoEncoder (VAE) network, which might lead to poor detail reconstruction and high computational complexity. To address these issues, we propose a Scale-adaptive Asymmetric Sparse Variational AutoEncoder (SAS-VAE) in this work. First, we develop an Asymmetric Multiscale Sparse Convolution (AMSC), which exploits multi-resolution branches to aggregate multiscale features at encoder, and excludes symmetric feature fusion branches to control the model complexity at decoder. Second, we design a Scale Adaptive Feature Refinement Structure (SAFRS) to adaptively adjust the number of Feature Refinement Modules (FRMs), thereby improving RD performance with an acceptable computational overhead. Third, we implement our framework with AMSC and SAFRS, and train it with an RD loss based on Fine-grained Weighted Binary Cross-Entropy (FWBCE) function. Experimental results on 8iVFB, Owlii, and MVUV datasets show that our method outperforms several popular methods, with a 90.0% time reduction and a 51.8% BD-BR saving compared with V-PCC. The code will be available soon at https://github.com/fancj2017/SAS-VAE .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Broadcasting
IEEE Transactions on Broadcasting 工程技术-电信学
CiteScore
9.40
自引率
31.10%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信