在满足均匀球条件的域中存在螺旋度最大化问题的最优域

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Wadim Gerner
{"title":"在满足均匀球条件的域中存在螺旋度最大化问题的最优域","authors":"Wadim Gerner","doi":"10.1063/5.0163183","DOIUrl":null,"url":null,"abstract":"In the present work we present a general framework which guarantees the existence of optimal domains for isoperimetric problems within the class of C1,1-regular domains satisfying a uniform ball condition as long as the desired objective function satisfies certain properties. We then verify that the helicity isoperimetric problem studied in [Cantarella et al., J. Math. Phys. 41, 5615 (2000)] satisfies the conditions of our framework and hence establish the existence of optimal domains within the given class of domains. We additionally use the same framework to prove the existence of optimal domains among uniform C1,1-domains for a first curl eigenvalue problem which has been studied recently for other classes of domains in [Enciso et al., Trans. Am. Math. Soc. 377, 4519–4540 (2024)].","PeriodicalId":16174,"journal":{"name":"Journal of Mathematical Physics","volume":"46 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of optimal domains for the helicity maximisation problem among domains satisfying a uniform ball condition\",\"authors\":\"Wadim Gerner\",\"doi\":\"10.1063/5.0163183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work we present a general framework which guarantees the existence of optimal domains for isoperimetric problems within the class of C1,1-regular domains satisfying a uniform ball condition as long as the desired objective function satisfies certain properties. We then verify that the helicity isoperimetric problem studied in [Cantarella et al., J. Math. Phys. 41, 5615 (2000)] satisfies the conditions of our framework and hence establish the existence of optimal domains within the given class of domains. We additionally use the same framework to prove the existence of optimal domains among uniform C1,1-domains for a first curl eigenvalue problem which has been studied recently for other classes of domains in [Enciso et al., Trans. Am. Math. Soc. 377, 4519–4540 (2024)].\",\"PeriodicalId\":16174,\"journal\":{\"name\":\"Journal of Mathematical Physics\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0163183\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0163183","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们提出了一个通用框架,只要所求目标函数满足某些属性,它就能保证在满足均匀球条件的 C1,1-regular 域类中,等周问题存在最优域。然后,我们验证了 [Cantarella 等人,J. Math. Phys. 41, 5615 (2000)]中研究的螺旋度等周问题满足我们框架的条件,并因此确定了给定域类中最优域的存在性。此外,我们还用同样的框架证明了第一卷曲特征值问题的均匀 C1,1 域中最优域的存在性,该问题最近在 [Enciso 等人,Trans. Am. Math. Soc. 377, 4519-4540 (2024)] 中对其他类别的域进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of optimal domains for the helicity maximisation problem among domains satisfying a uniform ball condition
In the present work we present a general framework which guarantees the existence of optimal domains for isoperimetric problems within the class of C1,1-regular domains satisfying a uniform ball condition as long as the desired objective function satisfies certain properties. We then verify that the helicity isoperimetric problem studied in [Cantarella et al., J. Math. Phys. 41, 5615 (2000)] satisfies the conditions of our framework and hence establish the existence of optimal domains within the given class of domains. We additionally use the same framework to prove the existence of optimal domains among uniform C1,1-domains for a first curl eigenvalue problem which has been studied recently for other classes of domains in [Enciso et al., Trans. Am. Math. Soc. 377, 4519–4540 (2024)].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Physics
Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
2.20
自引率
15.40%
发文量
396
审稿时长
4.3 months
期刊介绍: Since 1960, the Journal of Mathematical Physics (JMP) has published some of the best papers from outstanding mathematicians and physicists. JMP was the first journal in the field of mathematical physics and publishes research that connects the application of mathematics to problems in physics, as well as illustrates the development of mathematical methods for such applications and for the formulation of physical theories. The Journal of Mathematical Physics (JMP) features content in all areas of mathematical physics. Specifically, the articles focus on areas of research that illustrate the application of mathematics to problems in physics, the development of mathematical methods for such applications, and for the formulation of physical theories. The mathematics featured in the articles are written so that theoretical physicists can understand them. JMP also publishes review articles on mathematical subjects relevant to physics as well as special issues that combine manuscripts on a topic of current interest to the mathematical physics community. JMP welcomes original research of the highest quality in all active areas of mathematical physics, including the following: Partial Differential Equations Representation Theory and Algebraic Methods Many Body and Condensed Matter Physics Quantum Mechanics - General and Nonrelativistic Quantum Information and Computation Relativistic Quantum Mechanics, Quantum Field Theory, Quantum Gravity, and String Theory General Relativity and Gravitation Dynamical Systems Classical Mechanics and Classical Fields Fluids Statistical Physics Methods of Mathematical Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信