{"title":"经 Stückelberg 修正的大质量阿贝尔 3 形理论:约束分析、守恒电荷和 BRST 代数","authors":"A. K. Rao, R. P. Malik","doi":"10.1063/5.0205593","DOIUrl":null,"url":null,"abstract":"For the Stückelberg-modified massive Abelian 3-form theory in any arbitrary D-dimension of spacetime, we show that its classical gauge symmetry transformations are generated by the first-class constraints. We establish that the Noether conserved charge (corresponding to the local gauge symmetry transformations) is same as the standard form of the generator for the underlying local gauge symmetry transformations (expressed in terms of the first-class constraints). We promote these classical local, continuous and infinitesimal gauge symmetry transformations to their quantum counterparts Becchi–Rouet–Stora–Tyutin (BRST) and anti-BRST symmetry transformations which are respected by the coupled (but equivalent) Lagrangian densities. We derive the conserved (anti-)BRST charges by exploiting the theoretical potential of Noether’s theorem. However, these charges turn out to be non-nilpotent. Some of the highlights of our present investigation are (i) the derivation of the off-shell nilpotent versions of the (anti-)BRST charges from the standard non-nilpotent Noether conserved (anti-)BRST charges, (ii) the appearance of the operator forms of the first-class constraints at the quantum level through the physicality criteria with respect to the nilpotent versions of the (anti-)BRST charges, and (iii) the deduction of the Curci–Ferrari-type restrictions from the straightforward equality of the coupled (anti-)BRST invariant Lagrangian densities as well as from the requirement of the absolute anticommutativity of the off-shell nilpotent versions of the conserved (anti-)BRST charges.","PeriodicalId":16174,"journal":{"name":"Journal of Mathematical Physics","volume":"46 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stückelberg-modified massive Abelian 3-form theory: Constraint analysis, conserved charges and BRST algebra\",\"authors\":\"A. K. Rao, R. P. Malik\",\"doi\":\"10.1063/5.0205593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the Stückelberg-modified massive Abelian 3-form theory in any arbitrary D-dimension of spacetime, we show that its classical gauge symmetry transformations are generated by the first-class constraints. We establish that the Noether conserved charge (corresponding to the local gauge symmetry transformations) is same as the standard form of the generator for the underlying local gauge symmetry transformations (expressed in terms of the first-class constraints). We promote these classical local, continuous and infinitesimal gauge symmetry transformations to their quantum counterparts Becchi–Rouet–Stora–Tyutin (BRST) and anti-BRST symmetry transformations which are respected by the coupled (but equivalent) Lagrangian densities. We derive the conserved (anti-)BRST charges by exploiting the theoretical potential of Noether’s theorem. However, these charges turn out to be non-nilpotent. Some of the highlights of our present investigation are (i) the derivation of the off-shell nilpotent versions of the (anti-)BRST charges from the standard non-nilpotent Noether conserved (anti-)BRST charges, (ii) the appearance of the operator forms of the first-class constraints at the quantum level through the physicality criteria with respect to the nilpotent versions of the (anti-)BRST charges, and (iii) the deduction of the Curci–Ferrari-type restrictions from the straightforward equality of the coupled (anti-)BRST invariant Lagrangian densities as well as from the requirement of the absolute anticommutativity of the off-shell nilpotent versions of the conserved (anti-)BRST charges.\",\"PeriodicalId\":16174,\"journal\":{\"name\":\"Journal of Mathematical Physics\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0205593\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0205593","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
For the Stückelberg-modified massive Abelian 3-form theory in any arbitrary D-dimension of spacetime, we show that its classical gauge symmetry transformations are generated by the first-class constraints. We establish that the Noether conserved charge (corresponding to the local gauge symmetry transformations) is same as the standard form of the generator for the underlying local gauge symmetry transformations (expressed in terms of the first-class constraints). We promote these classical local, continuous and infinitesimal gauge symmetry transformations to their quantum counterparts Becchi–Rouet–Stora–Tyutin (BRST) and anti-BRST symmetry transformations which are respected by the coupled (but equivalent) Lagrangian densities. We derive the conserved (anti-)BRST charges by exploiting the theoretical potential of Noether’s theorem. However, these charges turn out to be non-nilpotent. Some of the highlights of our present investigation are (i) the derivation of the off-shell nilpotent versions of the (anti-)BRST charges from the standard non-nilpotent Noether conserved (anti-)BRST charges, (ii) the appearance of the operator forms of the first-class constraints at the quantum level through the physicality criteria with respect to the nilpotent versions of the (anti-)BRST charges, and (iii) the deduction of the Curci–Ferrari-type restrictions from the straightforward equality of the coupled (anti-)BRST invariant Lagrangian densities as well as from the requirement of the absolute anticommutativity of the off-shell nilpotent versions of the conserved (anti-)BRST charges.
期刊介绍:
Since 1960, the Journal of Mathematical Physics (JMP) has published some of the best papers from outstanding mathematicians and physicists. JMP was the first journal in the field of mathematical physics and publishes research that connects the application of mathematics to problems in physics, as well as illustrates the development of mathematical methods for such applications and for the formulation of physical theories.
The Journal of Mathematical Physics (JMP) features content in all areas of mathematical physics. Specifically, the articles focus on areas of research that illustrate the application of mathematics to problems in physics, the development of mathematical methods for such applications, and for the formulation of physical theories. The mathematics featured in the articles are written so that theoretical physicists can understand them. JMP also publishes review articles on mathematical subjects relevant to physics as well as special issues that combine manuscripts on a topic of current interest to the mathematical physics community.
JMP welcomes original research of the highest quality in all active areas of mathematical physics, including the following:
Partial Differential Equations
Representation Theory and Algebraic Methods
Many Body and Condensed Matter Physics
Quantum Mechanics - General and Nonrelativistic
Quantum Information and Computation
Relativistic Quantum Mechanics, Quantum Field Theory, Quantum Gravity, and String Theory
General Relativity and Gravitation
Dynamical Systems
Classical Mechanics and Classical Fields
Fluids
Statistical Physics
Methods of Mathematical Physics.