{"title":"具有近似磁通量面的等离子体中非线性磁场湍流的简化理想 MHD 系统","authors":"Naoki Sato, Michio Yamada","doi":"10.1063/5.0186445","DOIUrl":null,"url":null,"abstract":"This paper studies the nonlinear evolution of magnetic field turbulence in proximity of steady ideal Magnetohydrodynamics (MHD) configurations characterized by a small electric current, a small plasma flow, and approximate flux surfaces, a physical setting that is relevant for plasma confinement in stellarators. The aim is to gather insight on magnetic field dynamics, to elucidate accessibility and stability of three-dimensional MHD equilibria, as well as to formulate practical methods to compute them. Starting from the ideal MHD equations, a reduced dynamical system of two coupled nonlinear partial differential equations for the flux function and the angle variable associated with the Clebsch representation of the magnetic field is obtained. It is shown that under suitable boundary and gauge conditions such reduced system preserves magnetic energy, magnetic helicity, and total magnetic flux. The noncanonical Hamiltonian structure of the reduced system is identified, and used to show the nonlinear stability of steady solutions against perturbations involving only one Clebsch potential. The Hamiltonian structure is also applied to construct a dissipative dynamical system through the method of double brackets. This dissipative system enables the computation of MHD equilibria by minimizing energy until a critical point of the Hamiltonian is reached. Finally, an iterative scheme based on the alternate solution of the two steady equations in the reduced system is proposed as a further method to compute MHD equilibria. A theorem is proven which states that the iterative scheme converges to a nontrivial MHD equilbrium as long as solutions exist at each step of the iteration.","PeriodicalId":16174,"journal":{"name":"Journal of Mathematical Physics","volume":"242 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A reduced ideal MHD system for nonlinear magnetic field turbulence in plasmas with approximate flux surfaces\",\"authors\":\"Naoki Sato, Michio Yamada\",\"doi\":\"10.1063/5.0186445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the nonlinear evolution of magnetic field turbulence in proximity of steady ideal Magnetohydrodynamics (MHD) configurations characterized by a small electric current, a small plasma flow, and approximate flux surfaces, a physical setting that is relevant for plasma confinement in stellarators. The aim is to gather insight on magnetic field dynamics, to elucidate accessibility and stability of three-dimensional MHD equilibria, as well as to formulate practical methods to compute them. Starting from the ideal MHD equations, a reduced dynamical system of two coupled nonlinear partial differential equations for the flux function and the angle variable associated with the Clebsch representation of the magnetic field is obtained. It is shown that under suitable boundary and gauge conditions such reduced system preserves magnetic energy, magnetic helicity, and total magnetic flux. The noncanonical Hamiltonian structure of the reduced system is identified, and used to show the nonlinear stability of steady solutions against perturbations involving only one Clebsch potential. The Hamiltonian structure is also applied to construct a dissipative dynamical system through the method of double brackets. This dissipative system enables the computation of MHD equilibria by minimizing energy until a critical point of the Hamiltonian is reached. Finally, an iterative scheme based on the alternate solution of the two steady equations in the reduced system is proposed as a further method to compute MHD equilibria. A theorem is proven which states that the iterative scheme converges to a nontrivial MHD equilbrium as long as solutions exist at each step of the iteration.\",\"PeriodicalId\":16174,\"journal\":{\"name\":\"Journal of Mathematical Physics\",\"volume\":\"242 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0186445\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0186445","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
A reduced ideal MHD system for nonlinear magnetic field turbulence in plasmas with approximate flux surfaces
This paper studies the nonlinear evolution of magnetic field turbulence in proximity of steady ideal Magnetohydrodynamics (MHD) configurations characterized by a small electric current, a small plasma flow, and approximate flux surfaces, a physical setting that is relevant for plasma confinement in stellarators. The aim is to gather insight on magnetic field dynamics, to elucidate accessibility and stability of three-dimensional MHD equilibria, as well as to formulate practical methods to compute them. Starting from the ideal MHD equations, a reduced dynamical system of two coupled nonlinear partial differential equations for the flux function and the angle variable associated with the Clebsch representation of the magnetic field is obtained. It is shown that under suitable boundary and gauge conditions such reduced system preserves magnetic energy, magnetic helicity, and total magnetic flux. The noncanonical Hamiltonian structure of the reduced system is identified, and used to show the nonlinear stability of steady solutions against perturbations involving only one Clebsch potential. The Hamiltonian structure is also applied to construct a dissipative dynamical system through the method of double brackets. This dissipative system enables the computation of MHD equilibria by minimizing energy until a critical point of the Hamiltonian is reached. Finally, an iterative scheme based on the alternate solution of the two steady equations in the reduced system is proposed as a further method to compute MHD equilibria. A theorem is proven which states that the iterative scheme converges to a nontrivial MHD equilbrium as long as solutions exist at each step of the iteration.
期刊介绍:
Since 1960, the Journal of Mathematical Physics (JMP) has published some of the best papers from outstanding mathematicians and physicists. JMP was the first journal in the field of mathematical physics and publishes research that connects the application of mathematics to problems in physics, as well as illustrates the development of mathematical methods for such applications and for the formulation of physical theories.
The Journal of Mathematical Physics (JMP) features content in all areas of mathematical physics. Specifically, the articles focus on areas of research that illustrate the application of mathematics to problems in physics, the development of mathematical methods for such applications, and for the formulation of physical theories. The mathematics featured in the articles are written so that theoretical physicists can understand them. JMP also publishes review articles on mathematical subjects relevant to physics as well as special issues that combine manuscripts on a topic of current interest to the mathematical physics community.
JMP welcomes original research of the highest quality in all active areas of mathematical physics, including the following:
Partial Differential Equations
Representation Theory and Algebraic Methods
Many Body and Condensed Matter Physics
Quantum Mechanics - General and Nonrelativistic
Quantum Information and Computation
Relativistic Quantum Mechanics, Quantum Field Theory, Quantum Gravity, and String Theory
General Relativity and Gravitation
Dynamical Systems
Classical Mechanics and Classical Fields
Fluids
Statistical Physics
Methods of Mathematical Physics.