{"title":"单量子系统中的重定标变换和格罗内狄克约束形式主义","authors":"A. Vourdas","doi":"10.1063/5.0201690","DOIUrl":null,"url":null,"abstract":"The Grothedieck bound formalism is studied using “rescaling transformations,” in the context of a single quantum system. The rescaling transformations enlarge the set of unitary transformations (which apply to isolated systems), with transformations that change not only the phase but also the absolute value of the wavefunction, and can be linked to irreversible phenomena (e.g., quantum tunneling, damping and amplification, etc). A special case of rescaling transformations are the dequantisation transformations, which map a Hilbert space formalism into a formalism of scalars. The Grothendieck formalism considers a “classical” quadratic form C(θ) which takes values less than 1, and the corresponding “quantum” quadratic form Q(θ) which takes values greater than 1, up to the complex Grothendieck constant kG. It is shown that Q(θ) can be expressed as the trace of the product of θ with two rescaling matrices, and C(θ) can be expressed as the trace of the product of θ with two dequantisation matrices. Values of Q(θ) in the “ultra-quantum” region (1, kG) are very important, because this region is classically forbidden [C(θ) cannot take values in it]. An example with Q(θ)∈(1,kG) is given, which is related to phenomena where classically isolated by high potentials regions of space, communicate through quantum tunneling. Other examples show that “ultra-quantumness” according to the Grothendieck formalism (Q(θ)∈(1,kG)), is different from quantumness according to other criteria (like quantum interference or the uncertainty principle).","PeriodicalId":16174,"journal":{"name":"Journal of Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rescaling transformations and the Grothendieck bound formalism in a single quantum system\",\"authors\":\"A. Vourdas\",\"doi\":\"10.1063/5.0201690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Grothedieck bound formalism is studied using “rescaling transformations,” in the context of a single quantum system. The rescaling transformations enlarge the set of unitary transformations (which apply to isolated systems), with transformations that change not only the phase but also the absolute value of the wavefunction, and can be linked to irreversible phenomena (e.g., quantum tunneling, damping and amplification, etc). A special case of rescaling transformations are the dequantisation transformations, which map a Hilbert space formalism into a formalism of scalars. The Grothendieck formalism considers a “classical” quadratic form C(θ) which takes values less than 1, and the corresponding “quantum” quadratic form Q(θ) which takes values greater than 1, up to the complex Grothendieck constant kG. It is shown that Q(θ) can be expressed as the trace of the product of θ with two rescaling matrices, and C(θ) can be expressed as the trace of the product of θ with two dequantisation matrices. Values of Q(θ) in the “ultra-quantum” region (1, kG) are very important, because this region is classically forbidden [C(θ) cannot take values in it]. An example with Q(θ)∈(1,kG) is given, which is related to phenomena where classically isolated by high potentials regions of space, communicate through quantum tunneling. Other examples show that “ultra-quantumness” according to the Grothendieck formalism (Q(θ)∈(1,kG)), is different from quantumness according to other criteria (like quantum interference or the uncertainty principle).\",\"PeriodicalId\":16174,\"journal\":{\"name\":\"Journal of Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0201690\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0201690","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Rescaling transformations and the Grothendieck bound formalism in a single quantum system
The Grothedieck bound formalism is studied using “rescaling transformations,” in the context of a single quantum system. The rescaling transformations enlarge the set of unitary transformations (which apply to isolated systems), with transformations that change not only the phase but also the absolute value of the wavefunction, and can be linked to irreversible phenomena (e.g., quantum tunneling, damping and amplification, etc). A special case of rescaling transformations are the dequantisation transformations, which map a Hilbert space formalism into a formalism of scalars. The Grothendieck formalism considers a “classical” quadratic form C(θ) which takes values less than 1, and the corresponding “quantum” quadratic form Q(θ) which takes values greater than 1, up to the complex Grothendieck constant kG. It is shown that Q(θ) can be expressed as the trace of the product of θ with two rescaling matrices, and C(θ) can be expressed as the trace of the product of θ with two dequantisation matrices. Values of Q(θ) in the “ultra-quantum” region (1, kG) are very important, because this region is classically forbidden [C(θ) cannot take values in it]. An example with Q(θ)∈(1,kG) is given, which is related to phenomena where classically isolated by high potentials regions of space, communicate through quantum tunneling. Other examples show that “ultra-quantumness” according to the Grothendieck formalism (Q(θ)∈(1,kG)), is different from quantumness according to other criteria (like quantum interference or the uncertainty principle).
期刊介绍:
Since 1960, the Journal of Mathematical Physics (JMP) has published some of the best papers from outstanding mathematicians and physicists. JMP was the first journal in the field of mathematical physics and publishes research that connects the application of mathematics to problems in physics, as well as illustrates the development of mathematical methods for such applications and for the formulation of physical theories.
The Journal of Mathematical Physics (JMP) features content in all areas of mathematical physics. Specifically, the articles focus on areas of research that illustrate the application of mathematics to problems in physics, the development of mathematical methods for such applications, and for the formulation of physical theories. The mathematics featured in the articles are written so that theoretical physicists can understand them. JMP also publishes review articles on mathematical subjects relevant to physics as well as special issues that combine manuscripts on a topic of current interest to the mathematical physics community.
JMP welcomes original research of the highest quality in all active areas of mathematical physics, including the following:
Partial Differential Equations
Representation Theory and Algebraic Methods
Many Body and Condensed Matter Physics
Quantum Mechanics - General and Nonrelativistic
Quantum Information and Computation
Relativistic Quantum Mechanics, Quantum Field Theory, Quantum Gravity, and String Theory
General Relativity and Gravitation
Dynamical Systems
Classical Mechanics and Classical Fields
Fluids
Statistical Physics
Methods of Mathematical Physics.