{"title":"使用实时光学传感器反馈系统的二进制 MLC 性能","authors":"Nathan A. Corradini, Cristina Vite, Patrizia Urso","doi":"10.1002/acm2.14506","DOIUrl":null,"url":null,"abstract":"<p>The Radixact system (Accuray Inc., Sunnyvale, CA) is the latest platform release based on the TomoTherapy technology. The most recent system does not apply a leaf latency model correction after plan optimization to ensure the correct MLC leaf-open time (LOT) agreement between the TPS and machine delivery. The MLC uses optical sensors to measure the delivered LOTs in real-time and individual leaf-specific latency corrections are made to ensure agreement. The aim of this study was to assess the performance of the Radixact MLC with leaf-specific latency correction using the optical sensor's real-time feedback. Specifically, the study statistically evaluated the MLC LOT errors observed from 290 plan-specific quality assurance (PSQA) measurements. Repeatability testing was performed to quantify the uncertainty in the MLC feedback system delivery by analyzing > 1300 delivered treatment fractions throughout the course of radiotherapy. The clinical impact was evaluated by estimating the resulting dose difference in the patient targets due to the measured plan latencies. Our study measured an average plan latency equal to 2.0 ± 0.4 ms (0.6% ± 0.2%) for 290 PSQAs. Repeatability tests showed a mean standard deviation in plan latencies measuring 0.05 ms (0.02%). The deviation from the TPS in the mean target dose due to the plan latencies was estimated to be 0.0% ± 0.2% (range: -0.7%–1.1%). The current MLC system with real-time optical sensor feedback is capable of accurately delivering the TPS-generated sinograms. Repeatability test results showed that the system allows for high reliability in daily sinogram delivery. The MLC latency deviations were shown to have minimal clinical impact on the overall target dosimetry.</p>","PeriodicalId":14989,"journal":{"name":"Journal of Applied Clinical Medical Physics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/acm2.14506","citationCount":"0","resultStr":"{\"title\":\"Performance of binary MLC using real-time optical sensor feedback system\",\"authors\":\"Nathan A. Corradini, Cristina Vite, Patrizia Urso\",\"doi\":\"10.1002/acm2.14506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Radixact system (Accuray Inc., Sunnyvale, CA) is the latest platform release based on the TomoTherapy technology. The most recent system does not apply a leaf latency model correction after plan optimization to ensure the correct MLC leaf-open time (LOT) agreement between the TPS and machine delivery. The MLC uses optical sensors to measure the delivered LOTs in real-time and individual leaf-specific latency corrections are made to ensure agreement. The aim of this study was to assess the performance of the Radixact MLC with leaf-specific latency correction using the optical sensor's real-time feedback. Specifically, the study statistically evaluated the MLC LOT errors observed from 290 plan-specific quality assurance (PSQA) measurements. Repeatability testing was performed to quantify the uncertainty in the MLC feedback system delivery by analyzing > 1300 delivered treatment fractions throughout the course of radiotherapy. The clinical impact was evaluated by estimating the resulting dose difference in the patient targets due to the measured plan latencies. Our study measured an average plan latency equal to 2.0 ± 0.4 ms (0.6% ± 0.2%) for 290 PSQAs. Repeatability tests showed a mean standard deviation in plan latencies measuring 0.05 ms (0.02%). The deviation from the TPS in the mean target dose due to the plan latencies was estimated to be 0.0% ± 0.2% (range: -0.7%–1.1%). The current MLC system with real-time optical sensor feedback is capable of accurately delivering the TPS-generated sinograms. Repeatability test results showed that the system allows for high reliability in daily sinogram delivery. The MLC latency deviations were shown to have minimal clinical impact on the overall target dosimetry.</p>\",\"PeriodicalId\":14989,\"journal\":{\"name\":\"Journal of Applied Clinical Medical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/acm2.14506\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Clinical Medical Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/acm2.14506\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Clinical Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/acm2.14506","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Performance of binary MLC using real-time optical sensor feedback system
The Radixact system (Accuray Inc., Sunnyvale, CA) is the latest platform release based on the TomoTherapy technology. The most recent system does not apply a leaf latency model correction after plan optimization to ensure the correct MLC leaf-open time (LOT) agreement between the TPS and machine delivery. The MLC uses optical sensors to measure the delivered LOTs in real-time and individual leaf-specific latency corrections are made to ensure agreement. The aim of this study was to assess the performance of the Radixact MLC with leaf-specific latency correction using the optical sensor's real-time feedback. Specifically, the study statistically evaluated the MLC LOT errors observed from 290 plan-specific quality assurance (PSQA) measurements. Repeatability testing was performed to quantify the uncertainty in the MLC feedback system delivery by analyzing > 1300 delivered treatment fractions throughout the course of radiotherapy. The clinical impact was evaluated by estimating the resulting dose difference in the patient targets due to the measured plan latencies. Our study measured an average plan latency equal to 2.0 ± 0.4 ms (0.6% ± 0.2%) for 290 PSQAs. Repeatability tests showed a mean standard deviation in plan latencies measuring 0.05 ms (0.02%). The deviation from the TPS in the mean target dose due to the plan latencies was estimated to be 0.0% ± 0.2% (range: -0.7%–1.1%). The current MLC system with real-time optical sensor feedback is capable of accurately delivering the TPS-generated sinograms. Repeatability test results showed that the system allows for high reliability in daily sinogram delivery. The MLC latency deviations were shown to have minimal clinical impact on the overall target dosimetry.
期刊介绍:
Journal of Applied Clinical Medical Physics is an international Open Access publication dedicated to clinical medical physics. JACMP welcomes original contributions dealing with all aspects of medical physics from scientists working in the clinical medical physics around the world. JACMP accepts only online submission.
JACMP will publish:
-Original Contributions: Peer-reviewed, investigations that represent new and significant contributions to the field. Recommended word count: up to 7500.
-Review Articles: Reviews of major areas or sub-areas in the field of clinical medical physics. These articles may be of any length and are peer reviewed.
-Technical Notes: These should be no longer than 3000 words, including key references.
-Letters to the Editor: Comments on papers published in JACMP or on any other matters of interest to clinical medical physics. These should not be more than 1250 (including the literature) and their publication is only based on the decision of the editor, who occasionally asks experts on the merit of the contents.
-Book Reviews: The editorial office solicits Book Reviews.
-Announcements of Forthcoming Meetings: The Editor may provide notice of forthcoming meetings, course offerings, and other events relevant to clinical medical physics.
-Parallel Opposed Editorial: We welcome topics relevant to clinical practice and medical physics profession. The contents can be controversial debate or opposed aspects of an issue. One author argues for the position and the other against. Each side of the debate contains an opening statement up to 800 words, followed by a rebuttal up to 500 words. Readers interested in participating in this series should contact the moderator with a proposed title and a short description of the topic