{"title":"时间类洛伦兹埃克纳方程的考奇类问题的粘度解","authors":"Siyao Zhu, Xiaojun Cui, Tianqi Shi","doi":"10.1063/5.0178336","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a Cauchy type problem to the timelike Lorentzian eikonal equation on a globally hyperbolic space-time. For this equation, as the value of the solution on a Cauchy surface is known, we prove the existence of viscosity solutions on the past set (future set) of the Cauchy surface. Furthermore, when the time orientation of viscosity solution is consistent, the uniqueness and stability of viscosity solutions are also obtained.","PeriodicalId":16174,"journal":{"name":"Journal of Mathematical Physics","volume":"7 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viscosity solutions to a Cauchy type problem for timelike Lorentzian eikonal equation\",\"authors\":\"Siyao Zhu, Xiaojun Cui, Tianqi Shi\",\"doi\":\"10.1063/5.0178336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a Cauchy type problem to the timelike Lorentzian eikonal equation on a globally hyperbolic space-time. For this equation, as the value of the solution on a Cauchy surface is known, we prove the existence of viscosity solutions on the past set (future set) of the Cauchy surface. Furthermore, when the time orientation of viscosity solution is consistent, the uniqueness and stability of viscosity solutions are also obtained.\",\"PeriodicalId\":16174,\"journal\":{\"name\":\"Journal of Mathematical Physics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0178336\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0178336","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Viscosity solutions to a Cauchy type problem for timelike Lorentzian eikonal equation
In this paper, we propose a Cauchy type problem to the timelike Lorentzian eikonal equation on a globally hyperbolic space-time. For this equation, as the value of the solution on a Cauchy surface is known, we prove the existence of viscosity solutions on the past set (future set) of the Cauchy surface. Furthermore, when the time orientation of viscosity solution is consistent, the uniqueness and stability of viscosity solutions are also obtained.
期刊介绍:
Since 1960, the Journal of Mathematical Physics (JMP) has published some of the best papers from outstanding mathematicians and physicists. JMP was the first journal in the field of mathematical physics and publishes research that connects the application of mathematics to problems in physics, as well as illustrates the development of mathematical methods for such applications and for the formulation of physical theories.
The Journal of Mathematical Physics (JMP) features content in all areas of mathematical physics. Specifically, the articles focus on areas of research that illustrate the application of mathematics to problems in physics, the development of mathematical methods for such applications, and for the formulation of physical theories. The mathematics featured in the articles are written so that theoretical physicists can understand them. JMP also publishes review articles on mathematical subjects relevant to physics as well as special issues that combine manuscripts on a topic of current interest to the mathematical physics community.
JMP welcomes original research of the highest quality in all active areas of mathematical physics, including the following:
Partial Differential Equations
Representation Theory and Algebraic Methods
Many Body and Condensed Matter Physics
Quantum Mechanics - General and Nonrelativistic
Quantum Information and Computation
Relativistic Quantum Mechanics, Quantum Field Theory, Quantum Gravity, and String Theory
General Relativity and Gravitation
Dynamical Systems
Classical Mechanics and Classical Fields
Fluids
Statistical Physics
Methods of Mathematical Physics.