Satvinder Singh, Anju Arora, Karthick S. Babu, S. K. Verma, R. K. Panwar, Meena Agnihotri
{"title":"卡布利鹰嘴豆(Cicer arietinum L.)基因型的抗虫害与微营养的结合","authors":"Satvinder Singh, Anju Arora, Karthick S. Babu, S. K. Verma, R. K. Panwar, Meena Agnihotri","doi":"10.1111/pbr.13218","DOIUrl":null,"url":null,"abstract":"The leguminous chickpea is a good source of protein, but its yield potential is frequently constrained by biotic stresses, primarily <jats:italic>Helicoverpa armigera</jats:italic>, a major havoc for cultivation of the crop. To develop host plant resistance for minimizing the losses due to the pod borer, five <jats:italic>kabuli</jats:italic> parents with desired traits for pod borer tolerance were crossed in diallel mating design to produce 10 crosses which were analysed for traits related to pod borer and nutrition. Based on correlation studies, trichome density was found positively correlated with phenol content, but both the traits were negatively associated with number of damaged seeds. Therefore, the tolerant genotypes were identified on the basis of phenol content, trichome density, number of damaged seeds and field rating. Among parents ICC 12197 was found superior in terms of yield and borer tolerance features with an intermediate pest resistance susceptible rating in addition to higher Fe content. However, significant <jats:italic>sca</jats:italic> effects for higher phenol content and seed yield in ICC 11764 × ICC 14190 were recorded with reduced number of damaged seeds in addition to higher Fe and Zn content. It was observed that the specific combination involved good and poor combiners for each trait. The same cross also showed significant standard heterosis in desirable direction for phenol content, trichome density, number of damaged seeds and seed yield. Additionally, the ratio of <jats:italic>σ</jats:italic><jats:sup>2</jats:sup> GCA to <jats:italic>σ</jats:italic><jats:sup>2</jats:sup> SCA revealed nonadditive gene action in controlling the expression of phenol content, trichome density, number of damaged seeds and Fe and Zn content. Thus, breeder may focus efforts on desirable cross utilizing selection in further segregating generations for higher phenol content, trichome density and Fe and Zn content in addition to yield‐related traits while lesser number of damaged seeds per plant to concentrate for development of pod borer resilient high yielding <jats:italic>kabuli</jats:italic> genotypes to combat micronutrient deficiency.","PeriodicalId":20228,"journal":{"name":"Plant Breeding","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Antixenosis Against Helicoverpa armigera (Lepidoptera: Noctuidae) and Micronutrition in Kabuli Chickpea (Cicer arietinum L.) Genotypes\",\"authors\":\"Satvinder Singh, Anju Arora, Karthick S. Babu, S. K. Verma, R. K. Panwar, Meena Agnihotri\",\"doi\":\"10.1111/pbr.13218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The leguminous chickpea is a good source of protein, but its yield potential is frequently constrained by biotic stresses, primarily <jats:italic>Helicoverpa armigera</jats:italic>, a major havoc for cultivation of the crop. To develop host plant resistance for minimizing the losses due to the pod borer, five <jats:italic>kabuli</jats:italic> parents with desired traits for pod borer tolerance were crossed in diallel mating design to produce 10 crosses which were analysed for traits related to pod borer and nutrition. Based on correlation studies, trichome density was found positively correlated with phenol content, but both the traits were negatively associated with number of damaged seeds. Therefore, the tolerant genotypes were identified on the basis of phenol content, trichome density, number of damaged seeds and field rating. Among parents ICC 12197 was found superior in terms of yield and borer tolerance features with an intermediate pest resistance susceptible rating in addition to higher Fe content. However, significant <jats:italic>sca</jats:italic> effects for higher phenol content and seed yield in ICC 11764 × ICC 14190 were recorded with reduced number of damaged seeds in addition to higher Fe and Zn content. It was observed that the specific combination involved good and poor combiners for each trait. The same cross also showed significant standard heterosis in desirable direction for phenol content, trichome density, number of damaged seeds and seed yield. Additionally, the ratio of <jats:italic>σ</jats:italic><jats:sup>2</jats:sup> GCA to <jats:italic>σ</jats:italic><jats:sup>2</jats:sup> SCA revealed nonadditive gene action in controlling the expression of phenol content, trichome density, number of damaged seeds and Fe and Zn content. Thus, breeder may focus efforts on desirable cross utilizing selection in further segregating generations for higher phenol content, trichome density and Fe and Zn content in addition to yield‐related traits while lesser number of damaged seeds per plant to concentrate for development of pod borer resilient high yielding <jats:italic>kabuli</jats:italic> genotypes to combat micronutrient deficiency.\",\"PeriodicalId\":20228,\"journal\":{\"name\":\"Plant Breeding\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Breeding\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/pbr.13218\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/pbr.13218","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Integrating Antixenosis Against Helicoverpa armigera (Lepidoptera: Noctuidae) and Micronutrition in Kabuli Chickpea (Cicer arietinum L.) Genotypes
The leguminous chickpea is a good source of protein, but its yield potential is frequently constrained by biotic stresses, primarily Helicoverpa armigera, a major havoc for cultivation of the crop. To develop host plant resistance for minimizing the losses due to the pod borer, five kabuli parents with desired traits for pod borer tolerance were crossed in diallel mating design to produce 10 crosses which were analysed for traits related to pod borer and nutrition. Based on correlation studies, trichome density was found positively correlated with phenol content, but both the traits were negatively associated with number of damaged seeds. Therefore, the tolerant genotypes were identified on the basis of phenol content, trichome density, number of damaged seeds and field rating. Among parents ICC 12197 was found superior in terms of yield and borer tolerance features with an intermediate pest resistance susceptible rating in addition to higher Fe content. However, significant sca effects for higher phenol content and seed yield in ICC 11764 × ICC 14190 were recorded with reduced number of damaged seeds in addition to higher Fe and Zn content. It was observed that the specific combination involved good and poor combiners for each trait. The same cross also showed significant standard heterosis in desirable direction for phenol content, trichome density, number of damaged seeds and seed yield. Additionally, the ratio of σ2 GCA to σ2 SCA revealed nonadditive gene action in controlling the expression of phenol content, trichome density, number of damaged seeds and Fe and Zn content. Thus, breeder may focus efforts on desirable cross utilizing selection in further segregating generations for higher phenol content, trichome density and Fe and Zn content in addition to yield‐related traits while lesser number of damaged seeds per plant to concentrate for development of pod borer resilient high yielding kabuli genotypes to combat micronutrient deficiency.
期刊介绍:
PLANT BREEDING publishes full-length original manuscripts and review articles on all aspects of plant improvement, breeding methodologies, and genetics to include qualitative and quantitative inheritance and genomics of major crop species. PLANT BREEDING provides readers with cutting-edge information on use of molecular techniques and genomics as they relate to improving gain from selection. Since its subject matter embraces all aspects of crop improvement, its content is sought after by both industry and academia. Fields of interest: Genetics of cultivated plants as well as research in practical plant breeding.