利用深度卷积神经网络分析植被对遥感图像中建筑物阴影提取的影响

IF 1 4区 地球科学 Q4 GEOGRAPHY, PHYSICAL
Shuangquan Ge, Zihou Xu, Shaohan Cao, Dejun Feng, Wang Junfan
{"title":"利用深度卷积神经网络分析植被对遥感图像中建筑物阴影提取的影响","authors":"Shuangquan Ge, Zihou Xu, Shaohan Cao, Dejun Feng, Wang Junfan","doi":"10.1080/14498596.2024.2394439","DOIUrl":null,"url":null,"abstract":"To study the influence of vegetation on shadow extraction, an anti-interference DCNN was developed to extract shadows and vegetation from QuickBird images. The vegetation features, color and geomet...","PeriodicalId":50045,"journal":{"name":"Journal of Spatial Science","volume":"10 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of vegetation influence on building shadow extraction in remote sensing imagery using deep convolutional neural networks\",\"authors\":\"Shuangquan Ge, Zihou Xu, Shaohan Cao, Dejun Feng, Wang Junfan\",\"doi\":\"10.1080/14498596.2024.2394439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To study the influence of vegetation on shadow extraction, an anti-interference DCNN was developed to extract shadows and vegetation from QuickBird images. The vegetation features, color and geomet...\",\"PeriodicalId\":50045,\"journal\":{\"name\":\"Journal of Spatial Science\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spatial Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/14498596.2024.2394439\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spatial Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/14498596.2024.2394439","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了研究植被对阴影提取的影响,我们开发了一种抗干扰 DCNN,用于从 QuickBird 图像中提取阴影和植被。植被特征、颜色和几何形状对阴影提取有重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of vegetation influence on building shadow extraction in remote sensing imagery using deep convolutional neural networks
To study the influence of vegetation on shadow extraction, an anti-interference DCNN was developed to extract shadows and vegetation from QuickBird images. The vegetation features, color and geomet...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Spatial Science
Journal of Spatial Science 地学-地质学
CiteScore
5.00
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Journal of Spatial Science publishes papers broadly across the spatial sciences including such areas as cartography, geodesy, geographic information science, hydrography, digital image analysis and photogrammetry, remote sensing, surveying and related areas. Two types of papers are published by he journal: Research Papers and Professional Papers. Research Papers (including reviews) are peer-reviewed and must meet a minimum standard of making a contribution to the knowledge base of an area of the spatial sciences. This can be achieved through the empirical or theoretical contribution to knowledge that produces significant new outcomes. It is anticipated that Professional Papers will be written by industry practitioners. Professional Papers describe innovative aspects of professional practise and applications that advance the development of the spatial industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信