"亲爱的,时间跨度很重要":应用 CNN-LSTM 方法预测美国股票 ETF

IF 1.2 4区 经济学 Q3 ECONOMICS
Wenguang Lin
{"title":"\"亲爱的,时间跨度很重要\":应用 CNN-LSTM 方法预测美国股票 ETF","authors":"Wenguang Lin","doi":"10.1080/13504851.2024.2396550","DOIUrl":null,"url":null,"abstract":"The paper uses a hybrid model of convolutional neural network and long short-term memory (CNN-LSTM) to examine the impact of the prediction (or input) window length on the prediction accuracy of tr...","PeriodicalId":8014,"journal":{"name":"Applied Economics Letters","volume":"11 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"“Darling, time horizon matters”: applying the CNN-LSTM method for predicting US equity ETFs\",\"authors\":\"Wenguang Lin\",\"doi\":\"10.1080/13504851.2024.2396550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper uses a hybrid model of convolutional neural network and long short-term memory (CNN-LSTM) to examine the impact of the prediction (or input) window length on the prediction accuracy of tr...\",\"PeriodicalId\":8014,\"journal\":{\"name\":\"Applied Economics Letters\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Economics Letters\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/13504851.2024.2396550\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Economics Letters","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/13504851.2024.2396550","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文使用卷积神经网络和长短期记忆(CNN-LSTM)混合模型,研究了预测(或输入)窗口长度对 Tr...的预测准确性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
“Darling, time horizon matters”: applying the CNN-LSTM method for predicting US equity ETFs
The paper uses a hybrid model of convolutional neural network and long short-term memory (CNN-LSTM) to examine the impact of the prediction (or input) window length on the prediction accuracy of tr...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
6.20%
发文量
460
期刊介绍: Applied Economics Letters is a companion journal to Applied Economics and Applied Financial Economics. It publishes short accounts of new original research and encourages discussion of papers previously published in its two companion journals. Letters are reviewed by the Editor, a member of the Editorial Board or another suitable authority. They are generally applied in nature, but may include discussion of method and theoretical formulation. In a change to the format of the Applied Financial Series of journals, from 2009 Applied Financial Economics Letters will be incorporated into its sister journal Applied Economics Letters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信