{"title":"三维旋转自旋轨道耦合玻色-爱因斯坦凝聚态中的雷德贝格诱导拓扑孤子","authors":"Yang Wang, Jinlong Cui, Hongkai Zhang, Yuan Zhao, Siliu Xu, Qin Zhou","doi":"10.1088/0256-307x/41/9/090302","DOIUrl":null,"url":null,"abstract":"We present a novel approach for generating stable three-dimensional (3D) spatiotemporal solitons (SSs) within a rotating Bose–Einstein condensate, incorporating spin–orbit coupling (SOC), a weakly anharmonic potential and cold Rydberg atoms. This intricate system facilitates the emergence of quasi-stable 3D SSs with topological charges |<italic toggle=\"yes\">m</italic>| ≤ 3 in two spinor components, potentially exhibiting diverse spatial configurations. Our findings reveal that the Rydberg long-range interaction, spin–orbit coupling, and rotational angular frequency exert significant influence on the domains of existence and stability of these solitons. Notably, the Rydberg interaction contributes to a reduction in the norm of topological solitons, while the SOC plays a key role in stabilizing the SSs with finite topological charges. This research of SSs exhibits potential applications in precision measurement, quantum information processing, and other advanced technologies.","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":"57 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rydberg-Induced Topological Solitons in Three-Dimensional Rotation Spin–Orbit-Coupled Bose–Einstein Condensates\",\"authors\":\"Yang Wang, Jinlong Cui, Hongkai Zhang, Yuan Zhao, Siliu Xu, Qin Zhou\",\"doi\":\"10.1088/0256-307x/41/9/090302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel approach for generating stable three-dimensional (3D) spatiotemporal solitons (SSs) within a rotating Bose–Einstein condensate, incorporating spin–orbit coupling (SOC), a weakly anharmonic potential and cold Rydberg atoms. This intricate system facilitates the emergence of quasi-stable 3D SSs with topological charges |<italic toggle=\\\"yes\\\">m</italic>| ≤ 3 in two spinor components, potentially exhibiting diverse spatial configurations. Our findings reveal that the Rydberg long-range interaction, spin–orbit coupling, and rotational angular frequency exert significant influence on the domains of existence and stability of these solitons. Notably, the Rydberg interaction contributes to a reduction in the norm of topological solitons, while the SOC plays a key role in stabilizing the SSs with finite topological charges. This research of SSs exhibits potential applications in precision measurement, quantum information processing, and other advanced technologies.\",\"PeriodicalId\":10344,\"journal\":{\"name\":\"Chinese Physics Letters\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/0256-307x/41/9/090302\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/0256-307x/41/9/090302","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Rydberg-Induced Topological Solitons in Three-Dimensional Rotation Spin–Orbit-Coupled Bose–Einstein Condensates
We present a novel approach for generating stable three-dimensional (3D) spatiotemporal solitons (SSs) within a rotating Bose–Einstein condensate, incorporating spin–orbit coupling (SOC), a weakly anharmonic potential and cold Rydberg atoms. This intricate system facilitates the emergence of quasi-stable 3D SSs with topological charges |m| ≤ 3 in two spinor components, potentially exhibiting diverse spatial configurations. Our findings reveal that the Rydberg long-range interaction, spin–orbit coupling, and rotational angular frequency exert significant influence on the domains of existence and stability of these solitons. Notably, the Rydberg interaction contributes to a reduction in the norm of topological solitons, while the SOC plays a key role in stabilizing the SSs with finite topological charges. This research of SSs exhibits potential applications in precision measurement, quantum information processing, and other advanced technologies.
期刊介绍:
Chinese Physics Letters provides rapid publication of short reports and important research in all fields of physics and is published by the Chinese Physical Society and hosted online by IOP Publishing.